• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

A version of the G-conditionial bipolar theorem in L0(Rd;P)

Bouchard, Bruno (2005), A version of the G-conditionial bipolar theorem in L0(Rd;P), Journal of Theoretical Probability, 18, 2, p. 439-467. http://dx.doi.org/10.1007/s10959-005-3512-y

Type
Article accepté pour publication ou publié
Date
2005
Journal name
Journal of Theoretical Probability
Volume
18
Number
2
Publisher
Springer
Pages
439-467
Publication identifier
http://dx.doi.org/10.1007/s10959-005-3512-y
Metadata
Show full item record
Author(s)
Bouchard, Bruno
Abstract (EN)
Motivated by applications in financial mathematics, Ref. 3 showed that, although $$L^{0}(\mathbb{R}_{+}; \Omega, {\cal F}, \mathbb{P})$$ fails to be locally convex, an analogue to the classical bipolar theorem can be obtained for subsets of $$L^{0}(\mathbb{R}_{+}; \Omega, {\cal F}, \mathbb{P})$$ : if we place this space in polarity with itself, the bipolar of a set of non-negative random variables is equal to its closed (in probability), solid, convex hull. This result was extended by Ref. 1 in the multidimensional case, replacing $$\mathbb{R}_{+}$$ by a closed convex cone K of [0, infin)d, and by Ref. 12 who provided a conditional version in the unidimensional case. In this paper, we show that the conditional bipolar theorem of Ref. 12 can be extended to the multidimensional case. Using a decomposition result obtained in Ref. 3 and Ref. 1, we also remove the boundedness assumption of Ref. 12 in the one dimensional case and provide less restrictive assumptions in the multidimensional case. These assumptions are completely removed in the case of polyhedral cones K.
Subjects / Keywords
Partial order; Probability; Bipolar theorem; Convex analysis

Related items

Showing items related by title and author.

  • Thumbnail
    A multidimensional bipolar theorem in L0(Rd;P) 
    Bouchard, Bruno; Mazliak, Laurent (2003) Article accepté pour publication ou publié
  • Thumbnail
    The obstacle version of the Geometric Dynamic Programming Principle: Application to the pricing of American options under constraints 
    Bouchard, Bruno; Vu, Thanh Nam (2010) Article accepté pour publication ou publié
  • Thumbnail
    La construction du sentiment de reconnaissance des experts. Le cas d'une R&D dans l'industrie. 
    Picque-Kiraly, Claire (2019-12-11) Thèse
  • Thumbnail
    The Dalang–Morton–Willinger version of the fundamental theorem of asset pricing for the Bid-Ask financial market model 
    Jun, Zhao; Lépinette, Emmanuel (2018) Document de travail / Working paper
  • Thumbnail
    Option Pricing via Utility Maximization in the presence of Transaction Costs: an Asymptotic Analysis 
    Bouchard, Bruno (2000) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo