Inverting Ray-Knight identity
Sabot, Christophe; Tarres, Pierre (2016), Inverting Ray-Knight identity, Probability Theory and Related Fields, 165, 3, p. 559-580. 10.1007/s00440-015-0640-x
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1311.6622v2Date
2016Journal name
Probability Theory and Related FieldsVolume
165Number
3Publisher
Springer
Pages
559-580
Publication identifier
Metadata
Show full item recordAbstract (EN)
We provide a short proof of the Ray-Knight second generalized Theorem, using a martingale which can be seen (on the positive quadrant) as the Radon–Nikodym derivative of the reversed vertex-reinforced jump process measure with respect to the Markov jump process with the same conductances. Next we show that a variant of this process provides an inversion of that Ray-Knight identity. We give a similar result for the Ray-Knight first generalized Theorem.Subjects / Keywords
Ray-Knight identity; martingale; Markov jump process; Gaussian free fieldRelated items
Showing items related by title and author.
-
Lupu, Titus; Sabot, Christophe; Tarrès, Pierre (2021) Article accepté pour publication ou publié
-
Lupu, Titus; Sabot, Christophe; Tarrès, Pierre (2019) Article accepté pour publication ou publié
-
Sabot, Christophe; Tarres, Pierre (2015) Article accepté pour publication ou publié
-
Disertori, Margherita; Sabot, Christophe; Tarres, Pierre (2015) Article accepté pour publication ou publié
-
Lupu, Titus; Sabot, Christophe; Tarrès, Pierre (2020) Article accepté pour publication ou publié