Forecasting GDP over the business cycle in a multi-frequency and data-rich environment
Bessec, Marie; Bouabdallah, Othman (2015), Forecasting GDP over the business cycle in a multi-frequency and data-rich environment, Oxford Bulletin of Economics and Statistics, 77, 3, p. 360-384. 10.1111/obes.12069
Type
Article accepté pour publication ou publiéDate
2015Journal name
Oxford Bulletin of Economics and StatisticsVolume
77Number
3Publisher
Basil Blackwell
Pages
360-384
Publication identifier
Metadata
Show full item recordAbstract (EN)
This paper merges two specifications recently developed in the forecasting literature: the MS-MIDAS model (Guérin and Marcellino, 2013) and the factor-MIDAS model (Marcellino and Schumacher, 2010). The MS-factor MIDAS model that we introduce incorporates the information provided by a large data set consisting of mixed frequency variables and captures regime-switching behaviours. Monte Carlo simulations show that this specification tracks the dynamics of the process and predicts the regime switches successfully, both in-sample and out-of-sample. We apply this model to US data from 1959 to 2010 and properly detect recessions by exploiting the link between GDP growth and higher frequency financial variables.Subjects / Keywords
Markov-Switching; factor models, mixed frequency data; GDP forecastingRelated items
Showing items related by title and author.
-
Bessec, Marie (2019) Article accepté pour publication ou publié
-
Bessec, Marie (2015-05) Communication / Conférence
-
Bouabdallah, Othman; Bessec, Marie (2005) Article accepté pour publication ou publié
-
Bessec, Marie; Doz, Catherine (2014) Article accepté pour publication ou publié
-
Le Pen, Yannick; Sévi, Benoît (2010) Communication / Conférence