• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces

Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2016), Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces, Inventiones Mathematicae, 206, 2, p. 397-440. 10.1007/s00222-016-0656-6

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1506.03664v1
Date
2016
Journal name
Inventiones Mathematicae
Volume
206
Number
2
Publisher
Springer
Pages
397-440
Publication identifier
10.1007/s00222-016-0656-6
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc

Esteban, Maria J. cc

Loss, Michael
Abstract (EN)
This paper is motivated by the characterization of the optimal symmetry breaking region in Caffarelli-Kohn-Nirenberg inequalities. As a consequence, optimal functions and sharp constants are computed in the symmetry region. The result solves a longstanding conjecture on the optimal symmetry range. As a byproduct of our method we obtain sharp estimates for the principal eigenvalue of Schrödinger operators on some non-flat non-compact manifolds, which to the best of our knowledge are new. The method relies on generalized entropy functionals for nonlinear diffusion equations. It opens a new area of research for approaches related to carré du champ methods on non-compact manifolds. However, key estimates depend as much on curvature properties as on purely nonlinear effects. The method is well adapted to functional inequalities involving simple weights and also applies to general cylinders. Beyond results on symmetry and symmetry breaking, and on optimal constants in functional inequalities, rigidity theorems for nonlinear elliptic equations can be deduced in rather general settings.
Subjects / Keywords
Caffarelli-Kohn-Nirenberg inequalities; symmetry; symmetry breaking; optimal constants; rigidity results; fast diffusion equation; carré du champ; bifurcation; instability; Emden-Fowler transformation; cylinders; non-compact manifolds; Laplace-Beltrami operator; spectral estimates; Keller-Lieb-Thirring estimate; Hardy inequality

Related items

Showing items related by title and author.

  • Thumbnail
    Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2018) Communication / Conférence
  • Thumbnail
    Nonlinear flows and rigidity results on compact manifolds 
    Loss, Michael; Esteban, Maria J.; Dolbeault, Jean (2014) Article accepté pour publication ou publié
  • Thumbnail
    Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations 
    Esteban, Maria J.; Dolbeault, Jean (2014) Article accepté pour publication ou publié
  • Thumbnail
    Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates 
    Loss, Michael; Laptev, Ari; Esteban, Maria J.; Dolbeault, Jean (2013) Article accepté pour publication ou publié
  • Thumbnail
    Extremal functions in some interpolation inequalities: Symmetry, symmetry breaking and estimates of the best constants 
    Dolbeault, Jean; Esteban, Maria J. (2011) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo