• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

On minimal two-edge-connected graphs

Cornaz, Denis; Magnouche, Youcef; Mahjoub, Ali Ridha (2014), On minimal two-edge-connected graphs, 2014 International Conference on Control, Decision and Information Technologies (CoDIT). Proceedings, IEEE : Piscataway, NJ, p. 251-256. 10.1109/CoDIT.2014.6996902

Type
Communication / Conférence
Date
2014
Conference title
2014 International Conference on Control, Decision and Information Technologies (CoDIT)
Conference date
2014-11
Conference city
Metz
Conference country
France
Book title
2014 International Conference on Control, Decision and Information Technologies (CoDIT). Proceedings
Publisher
IEEE
Published in
Piscataway, NJ
ISBN
978-1-4799-6773-5
Pages
251-256
Publication identifier
10.1109/CoDIT.2014.6996902
Metadata
Show full item record
Author(s)
Cornaz, Denis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Magnouche, Youcef
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mahjoub, Ali Ridha
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Given G = (V;E) an undirected graph and a nonnegative cost function c : E → ℚ, the 2-edge connected spanning subgraph problem (TECSP for short) is to find a two-edge connected subgraph HP = (V; F) of G with minimum cost (i.e., c(F) = Σe∈F c(e) is minimum). If c(e) > 0 for all e ∈ E then every optimal solution for TECSP is an inclusionwise minimal two-edge connected subgraph. In this paper we provide preliminary results, from a polyhedral point of view, concerning the inclusionwise minimal solutions of TECSP. This problem is clearly NP-Hard. We propose an ILP formulation for the problem and study the associated polytope for the wheels. Morever, we describe some valid inequalities and propose a branch-and-cut algorithm for the problem.
Subjects / Keywords
Two-edge-connected; branch-and-cut; polyhedral approach; separation problem

Related items

Showing items related by title and author.

  • Thumbnail
    The multi-terminal vertex separator problem: Polyhedral analysis and Branch-and-Cut 
    Cornaz, Denis; Magnouche, Youcef; Mahjoub, Ali Ridha; Martin, Sébastien (2019) Article accepté pour publication ou publié
  • Thumbnail
    The multi-terminal vertex separator problem: Polyhedral analysis and Branch-and-Cut 
    Cornaz, Denis; Magnouche, Youcef; Mahjoub, Ali Ridha; Martin, Sébastien (2015) Communication / Conférence
  • Thumbnail
    On perfectly two-edge connected graphs 
    Mahjoub, Ali Ridha (1997) Article accepté pour publication ou publié
  • Thumbnail
    Two edge connected spanning subgraphs and polyhedra 
    Mahjoub, Ali Ridha (1994) Article accepté pour publication ou publié
  • Thumbnail
    Two-edge connected subgraph with bounded rings problem: Polyhedral results and Branch-and-Cut 
    Pesneau, Pierre; Mahjoub, Ali Ridha; McCormick, S. Thomas; Fortz, bernard (2006) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo