• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Parameterized Approximability of Maximizing the Spread of Influence in Networks

Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2013), Parameterized Approximability of Maximizing the Spread of Influence in Networks, in Ding-Zhu Du, Guochuan Zhang, Computing and Combinatorics. 19th International Conference, COCOON 2013, Hangzhou, China, June 21-23, 2013. Proceedings, Springer : Berlin Heidelberg, p. 543-554. 10.1007/978-3-642-38768-5_48

Type
Communication / Conférence
External document link
http://arxiv.org/abs/1303.6907v2
Date
2013
Book title
Computing and Combinatorics. 19th International Conference, COCOON 2013, Hangzhou, China, June 21-23, 2013. Proceedings
Book author
Ding-Zhu Du, Guochuan Zhang
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-642-38767-8
Pages
543-554
Publication identifier
10.1007/978-3-642-38768-5_48
Metadata
Show full item record
Author(s)
Bazgan, Cristina
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Chopin, Morgan
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Nichterlein, André
Berlin University of Technology
Sikora, Florian cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
In this paper, we consider the problem of maximizing the spread of influence through a social network. Here, we are given a graph G = (V,E), a positive integer k and a threshold value thr(v) attached to each vertex v ∈ V. The objective is then to find a subset of k vertices to “activate” such that the number of activated vertices at the end of a propagation process is maximum. A vertex v gets activated if at least thr(v) of its neighbors are. We show that this problem is strongly inapproximable in fpt-time with respect to (w.r.t.) parameter k even for very restrictive thresholds. For unanimity thresholds, we prove that the problem is inapproximable in polynomial time and the decision version is W[1]-hard w.r.t. parameter k. On the positive side, it becomes r(n)-approximable in fpt-time w.r.t. parameter k for any strictly increasing function r. Moreover, we give an fpt-time algorithm to solve the decision version for bounded degree graphs.
Subjects / Keywords
TSS

Related items

Showing items related by title and author.

  • Thumbnail
    Parameterized approximability of maximizing the spread of influence in networks 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Article accepté pour publication ou publié
  • Thumbnail
    Parameterized Inapproximability of Target Set Selection and Generalizations 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Communication / Conférence
  • Thumbnail
    Parameterized Inapproximability of Target Set Selection and Generalizations 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Article accepté pour publication ou publié
  • Thumbnail
    The Complexity of Finding Harmless Individuals in Social Networks 
    Bazgan, Cristina; Chopin, Morgan (2014) Article accepté pour publication ou publié
  • Thumbnail
    Parameterized Complexity of the Firefighter Problem 
    Bazgan, Cristina; Chopin, Morgan; Fellows, Michael R. (2011) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo