Show simple item record

hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorGaland, Lucie
HAL ID: 743157
hal.structure.identifierLaboratoire d'Informatique de Paris 6 [LIP6]
dc.contributor.authorLust, Thibaut
HAL ID: 9601
ORCID: 0000-0001-8433-518X
dc.date.accessioned2016-09-20T07:32:38Z
dc.date.available2016-09-20T07:32:38Z
dc.date.issued2015
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/15811
dc.descriptionLNCS n°9346en
dc.language.isoenen
dc.subjectMultiobjective Combinatorial Optimizationen
dc.subjectFairnessen
dc.subjectLorenz dominanceen
dc.subjectTwo-phase methoden
dc.subject.ddc003en
dc.titleExact Methods for Computing All Lorenz Optimal Solutions to Biobjective Problemsen
dc.typeCommunication / Conférence
dc.description.abstractenThis paper deals with biobjective combinatorial optimization problems where both objectives are required to be well-balanced. Lorenz dominance is a refinement of the Pareto dominance that has been proposed in economics to measure the inequalities in income distributions. We consider in this work the problem of computing the Lorenz optimal solutions to combinatorial optimization problems where solutions are evaluated by a two-component vector. This setting can encompass fair optimization or robust optimization. The computation of Lorenz optimal solutions in biobjective combinatorial optimization is however challenging (it has been shown intractable and NP-hard on certain problems). Nevertheless, to our knowledge, very few works address this problem. We propose thus in this work new methods to generate Lorenz optimal solutions. More precisely, we consider the adaptation of the well-known two-phase method proposed in biobjective optimization for computing Pareto optimal solutions to the direct computing of Lorenz optimal solutions. We show that some properties of the Lorenz dominance can provide a more efficient variant of the two-phase method. The results of the new method are compared to state-of-the-art methods on various biobjective combinatorial optimization problems and we show that the new method is more efficient in a majority of cases.en
dc.identifier.citationpages305-321en
dc.relation.ispartoftitleAlgorithmic Decision Theory 4th International Conference, ADT 2015, Lexington, KY, USA, September 27-30, 2015, Proceedingsen
dc.relation.ispartofeditorWalsh, Toby
dc.relation.ispartofpublnameSpringeren
dc.relation.ispartofpublcityBerlin Heidelbergen
dc.relation.ispartofdate2015
dc.relation.ispartofurl10.1007/978-3-319-23114-3en
dc.subject.ddclabelRecherche opérationnelleen
dc.relation.ispartofisbn978-3-319-23113-6en
dc.relation.conftitle4th International Conference on Algorithmic Decision Theory, ADT 2015en
dc.relation.confdate2015-09
dc.relation.confcityLexington, KYen
dc.relation.confcountryUnited Statesen
dc.relation.forthcomingnonen
dc.identifier.doi10.1007/978-3-319-23114-3_19en
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2016-09-19T13:52:56Z
hal.faultCode{"duplicate-entry":{"hal-01361196":{"doi":"1.0"}}}
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record