• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Perturbed Decomposition Algorithm applied to the multi-objective Traveling Salesman Problem

Cornu, Marek; Cazenave, Tristan; Vanderpooten, Daniel (2017), Perturbed Decomposition Algorithm applied to the multi-objective Traveling Salesman Problem, Computers and Operations Research, 79, p. 314-330. 10.1016/j.cor.2016.04.025

View/Open
PDA_COR.pdf (769.7Kb)
Type
Article accepté pour publication ou publié
Date
2017
Journal name
Computers and Operations Research
Volume
79
Publisher
Elsevier
Pages
314-330
Publication identifier
10.1016/j.cor.2016.04.025
Metadata
Show full item record
Author(s)
Cornu, Marek
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Cazenave, Tristan
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Vanderpooten, Daniel
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Dealing with multi-objective combinatorial optimization, this article proposes a new multi-objective set-based meta-heuristic named Perturbed Decomposition Algorithm (PDA). Combining ideas from decomposition methods, local search and data perturbation, PDA provides a 2-phase modular framework for finding an approximation of the Pareto front. The first phase decomposes the search into a number of linearly aggregated problems of the original multi-objective problem. The second phase conducts an iterative process: aggregated problems are first perturbed then selected and optimized by an efficient single-objective local search solver. Resulting solutions will serve as a starting point of a multi-objective local search procedure, called Pareto Local Search. After presenting a literature review of meta-heuristics on the multi-objective symmetric Traveling Salesman Problem (TSP), we conduct experiments on several instances of the bi-objective and tri-objective TSP. The experiments show that our proposed algorithm outperforms the best current methods on this problem.
Subjects / Keywords
Multi-objective combinatorial optimization; Multi-objective Traveling Salesman Problem; Meta-heuristics; Pareto Local search; Decomposition algorithm; Data perturbation
JEL
C44 - Operations Research; Statistical Decision Theory

Related items

Showing items related by title and author.

  • Thumbnail
    Application of the Nested Rollout Policy Adaptation Algorithm to the Traveling Salesman Problem with Time Windows 
    Cazenave, Tristan; Teytaud, Fabien (2012) Communication / Conférence
  • Thumbnail
    Optimization of the Nested Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows 
    Cazenave, Tristan; Teytaud, Fabien; Rimmel, Arpad (2011) Communication / Conférence
  • Thumbnail
    An efficient procedure for finding best compromise solutions to the multi-objective assignment problem 
    Belhoul, Lyes; Galand, Lucie; Vanderpooten, Daniel (2014) Article accepté pour publication ou publié
  • Thumbnail
    Discrete representation of the non-dominated set for multi-objective optimization problems using kernels 
    Bazgan, Cristina; Jamain, Florian; Vanderpooten, Daniel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Implementing an efficient fptas for the 0–1 multi-objective knapsack problem 
    Bazgan, Cristina; Hugot, Hadrien; Vanderpooten, Daniel (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo