• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Building Clusters with Lower-Bounded Sizes

Abu-Khzam, Faisal N.; Bazgan, Cristina; Casel, Katrin; Fernau, Henning (2016), Building Clusters with Lower-Bounded Sizes, in Hong, Seok-Hee, 27th International Symposium on Algorithms and Computation, ISAAC 2016, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik : Wadern (Germany), p. 148:1–148:12. 10.4230/LIPIcs.ISAAC.2016.148

View/Open
LIPIcs-ISAAC-2016-4.pdf (499.9Kb)
Type
Communication / Conférence
Date
2016
Conference title
27th International Symposium on Algorithms and Computation, ISAAC 2016
Conference date
2016-12
Conference city
Sydney
Conference country
Australia
Book title
27th International Symposium on Algorithms and Computation, ISAAC 2016
Book author
Hong, Seok-Hee
Publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Published in
Wadern (Germany)
ISBN
978-3-95977-026-2
Pages
148:1–148:12
Publication identifier
10.4230/LIPIcs.ISAAC.2016.148
Metadata
Show full item record
Author(s)
Abu-Khzam, Faisal N.
Lebanese American University [LAU]
Bazgan, Cristina
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Casel, Katrin

Fernau, Henning
Abstract (EN)
Classical clustering problems search for a partition of objects into a fixed number of clusters. In many scenarios however the number of clusters is not known or necessarily fixed. Further, clusters are sometimes only considered to be of significance if they have a certain size. We discuss clustering into sets of minimum cardinality k without a fixed number of sets and present a general model for these types of problems. This general framework allows the comparison of different measures to assess the quality of a clustering. We specifically consider nine quality-measures and classify the complexity of the resulting problems with respect to k. Further, we derive some polynomial-time solvable cases for k = 2 with connections to matching-type problems which, among other graph problems, then are used to compute approximations for larger values of k.
Subjects / Keywords
Clustering; Approximation Algorithms; Complexity; Matching
JEL
C44 - Operations Research; Statistical Decision Theory

Related items

Showing items related by title and author.

  • Thumbnail
    Clustering with Lower-Bounded Sizes - A General Graph-Theoretic Framework 
    Abu-Khzam, Faisal N.; Bazgan, Cristina; Casel, Katrin; Fernau, Henning (2018) Article accepté pour publication ou publié
  • Thumbnail
    Approximation Algorithms Inspired by Kernelization Methods 
    Abu-Khzam, Faisal N.; Bazgan, Cristina; Chopin, Morgan; Fernau, Henning (2014) Communication / Conférence
  • Thumbnail
    Data Reductions and Combinatorial Bounds for Improved Approximation Algorithms 
    Abu-Khzam, Faisal N.; Bazgan, Cristina; Chopin, Morgan; Fernau, Henning (2016) Article accepté pour publication ou publié
  • Thumbnail
    Parameterized Dynamic Variants of Red-Blue Dominating Set 
    Abu-Khzam, Faisal; Bazgan, Cristina; Fernau, Henning (2020) Communication / Conférence
  • Thumbnail
    Algorithmic Aspects of Upper Domination: A Parameterized Perspective 
    Bazgan, Cristina; Brankovic, Ljiljana; Casel, Katrin; Fernau, Henning; Jansen, Klaus; Lampis, Michael; Liedloff, Mathieu; Monnot, Jérôme; Paschos, Vangelis (2016) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo