• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Parameterized Inapproximability of Degree Anonymization

Bazgan, Cristina; Nichterlein, André (2014), Parameterized Inapproximability of Degree Anonymization, in Cygan, Marek; Heggernes, Pinar, Parameterized and Exact Computation, Springer : Cham, p. 75-84. 10.1007/978-3-319-13524-3_7

Type
Communication / Conférence
Date
2014
Conference title
9th International Symposium, IPEC 2014
Conference date
2014-09
Conference city
Wroclaw
Conference country
Poland
Book title
Parameterized and Exact Computation
Book author
Cygan, Marek; Heggernes, Pinar
Publisher
Springer
Published in
Cham
ISBN
978-3-319-13523-6
Number of pages
343
Pages
75-84
Publication identifier
10.1007/978-3-319-13524-3_7
Metadata
Show full item record
Author(s)
Bazgan, Cristina
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Nichterlein, André
Department of Software Engineering and Theoretical Computer Science [SWT - TUB]
Abstract (EN)
The Degree Anonymity problem arises in the context of combinatorial graph anonymization. It asks, given a graph G and two integers k and s, whether G can be made k-anonymous with at most s modifications. Here, a graph is k-anonymous if the graph contains for every vertex at least k−1 other vertices of the same degree. Complementing recent investigations on its computational complexity, we show that this problem is very hard when studied from the viewpoints of approximation as well as parameterized approximation. In particular, for the optimization variant where one wants to minimize the number of either edge or vertex deletions there is no factor-n1−ε approximation running in polynomial time unless P = NP, for any constant 0<ε≤1. For the variant where one wants to maximize k and the number s of either edge or vertex deletions is given, there is no factor-n1/2−ε approximation running in time f(s)⋅nO(1) unless W[1] = FPT, for any constant 0<ε≤1/2 and any function f. On the positive side, we classify the general decision version as fixed-parameter tractable with respect to the combined parameter solution size s and maximum degree.
Subjects / Keywords
Anonymization; Parameterized approximation
JEL
C44 - Operations Research; Statistical Decision Theory

Related items

Showing items related by title and author.

  • Thumbnail
    Parameterized Inapproximability of Target Set Selection and Generalizations 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Communication / Conférence
  • Thumbnail
    Parameterized Inapproximability of Target Set Selection and Generalizations 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Article accepté pour publication ou publié
  • Thumbnail
    Parameterized Approximability of Maximizing the Spread of Influence in Networks 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2013) Communication / Conférence
  • Thumbnail
    Parameterized approximability of maximizing the spread of influence in networks 
    Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Article accepté pour publication ou publié
  • Thumbnail
    Finding large degree-anonymous subgraphs is hard 
    Bazgan, Cristina; Bredereck, Robert; Hartung, Sepp; Nichterlein, André; Woeginger, Gerhard (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo