
Sequential Halving Applied to Trees
Cazenave, Tristan (2015), Sequential Halving Applied to Trees, IEEE Transactions on Computational Intelligence and AI in Games, 7, 1, p. 102-105. 10.1109/TCIAIG.2014.2317737
View/ Open
Type
Article accepté pour publication ou publiéDate
2015Journal name
IEEE Transactions on Computational Intelligence and AI in GamesVolume
7Number
1Publisher
IEEE
Pages
102-105
Publication identifier
Metadata
Show full item recordAuthor(s)
Cazenave, TristanLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Monte Carlo tree search (MCTS) is state of the art for multiple games and problems. The base algorithm currently used for MCTS is UCT. We propose an alternative MCTS algorithm: sequential halving applied to Trees (SHOT). It has multiple advantages over UCT: it spends less time in the tree, it uses less memory, it is parameter free, at equal time settings it beats UCT for a complex combinatorial game and it can be efficiently parallelized.Subjects / Keywords
UCT; Monte Carlo Tree Search; Sequential Halving; Nogo; Sequential halving applied to trees (SHOT)Related items
Showing items related by title and author.
-
Cornu, Marek; Cazenave, Tristan; Vanderpooten, Daniel (2017) Article accepté pour publication ou publié
-
Jouandeau, Nicolas; Cazenave, Tristan (2014) Communication / Conférence
-
Jouandeau, Nicolas; Cazenave, Tristan (2014) Communication / Conférence
-
Saffidine, Abdallah; Cazenave, Tristan (2011) Communication / Conférence
-
Méhat, Jean; Cazenave, Tristan (2011) Communication / Conférence