• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Computation of Gaussian orthant probabilities in high dimension

Ridgway, James (2016), Computation of Gaussian orthant probabilities in high dimension, Statistics and Computing, 26, 4, p. 899-916. 10.1007/s11222-015-9578-1

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1411.1314v2
Date
2016
Journal name
Statistics and Computing
Volume
26
Number
4
Publisher
Chapman & Hall
Pages
899-916
Publication identifier
10.1007/s11222-015-9578-1
Metadata
Show full item record
Author(s)
Ridgway, James
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We study the computation of Gaussian orthant probabilities, i.e. the probability that a Gaussian variable falls inside a quadrant. The Geweke–Hajivassiliou–Keane (GHK) algorithm (Geweke, Comput Sci Stat 23:571–578 1991, Keane, Simulation estimation for panel data models with limited dependent variables, 1993, Hajivassiliou, J Econom 72:85–134, 1996, Genz, J Comput Graph Stat 1:141–149, 1992) is currently used for integrals of dimension greater than 10. In this paper, we show that for Markovian covariances GHK can be interpreted as the estimator of the normalizing constant of a state-space model using sequential importance sampling. We show for an AR(1) the variance of the GHK, properly normalized, diverges exponentially fast with the dimension. As an improvement we propose using a particle filter. We then generalize this idea to arbitrary covariance matrices using Sequential Monte Carlo with properly tailored MCMC moves. We show empirically that this can lead to drastic improvements on currently used algorithms. We also extend the framework to orthants of mixture of Gaussians (Student, Cauchy, etc.), and to the simulation of truncated Gaussians.
Subjects / Keywords
GHK; Orthant probability; PF; SMC

Related items

Showing items related by title and author.

  • Thumbnail
    Avancées en statistiques computationelles Bayesiennes et approximation de mesures de Gibbs 
    Ridgway, James (2015-09) Thèse
  • Thumbnail
    On the properties of variational approximations of Gibbs posteriors 
    Alquier, Pierre; Ridgway, James; Chopin, Nicolas (2016) Article accepté pour publication ou publié
  • Thumbnail
    Markov and the Duchy of Savoy: segmenting a century with regime-switching models 
    Alerini, Julien; Olteanu, Madalina; Ridgway, James (2017) Article accepté pour publication ou publié
  • Thumbnail
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
  • Thumbnail
    Spreading in kinetic reaction-transport equations in higher velocity dimensions 
    Bouin, Emeric; Caillerie, Nils (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo