• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Defining and computing Hausdorff distances between distributions on the real line and on the circle: link between optimal transport and morphological dilations

Bloch, Isabelle; Atif, Jamal (2016), Defining and computing Hausdorff distances between distributions on the real line and on the circle: link between optimal transport and morphological dilations, Mathematical Morphology: Theory and Applications, 1, 1, p. 79-99. 10.1515/mathm-2016-0005

Type
Article accepté pour publication ou publié
Date
2016
Journal name
Mathematical Morphology: Theory and Applications
Volume
1
Number
1
Pages
79-99
Publication identifier
10.1515/mathm-2016-0005
Metadata
Show full item record
Author(s)
Bloch, Isabelle cc
Laboratoire Traitement et Communication de l'Information [LTCI]
Atif, Jamal
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Comparing probability or possibility distributions is important in many fields of information processing under uncertainty. In this paper we address the question of defining and computing Hausdorff distances between distributions in a general sense. We propose several dilations of distributions, and exhibit some links between Lévy-Prokhorov distances and dilation-based distances. In particular, mathematical morphology provides an elegant way to deal with periodic distributions. The case of possibility distributions is addressed using fuzzy mathematical morphology. As an illustration, the proposed approaches are applied to the comparison of spatial relations between objects in an image or a video sequence, when these relations are represented as distributions.
Subjects / Keywords
Comparison of probabilistic or possibilistic distributions; optimal transport; mathematical morphology; fuzzy mathematical morphology; Hausdorff; Prokhorov; Lévy distances; spatial relations

Related items

Showing items related by title and author.

  • Thumbnail
    Hausdorff distances between distributions using optimal transport and mathematical morphology 
    Bloch, Isabelle; Atif, Jamal (2015) Communication / Conférence
  • Thumbnail
    Deux approches pour la comparaison de relations spatiales floues. Transport optimal et morphologie mathématique 
    Bloch, Isabelle; Atif, Jamal (2015) Article accepté pour publication ou publié
  • Thumbnail
    Comparaison de relations spatiales floues - Approches par transport optimal et morphologie mathématique 
    Bloch, Isabelle; Atif, Jamal (2014) Communication / Conférence
  • Thumbnail
    Some relationships between fuzzy sets, mathematical morphology, rough sets, F-transforms, and formal concept analysis 
    Atif, Jamal; Bloch, Isabelle; Hudelot, Céline (2016) Article accepté pour publication ou publié
  • Thumbnail
    Belief revision, minimal change and relaxation: A general framework based on satisfaction systems, and applications to description logics 
    Aiguier, Marc; Atif, Jamal; Bloch, Isabelle; Hudelot, Céline (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo