Tuning Active Sampling Techniques for Evolutionary Learner from Big Data Sets: Review and Discussion
hal.structure.identifier | ||
dc.contributor.author | Ben Hamida, Sana
HAL ID: 177299 ORCID: 0000-0003-4202-613X | * |
hal.structure.identifier | ||
dc.contributor.author | Rukoz, Marta | * |
dc.date.accessioned | 2017-01-27T15:32:08Z | |
dc.date.available | 2017-01-27T15:32:08Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/16215 | |
dc.language.iso | en | en |
dc.subject | Training | |
dc.subject | Training data | |
dc.subject | Evolutionary computation | |
dc.subject | Supervised learning | |
dc.subject | Data mining | |
dc.subject | Sociology | |
dc.subject | Statistics | |
dc.subject.ddc | 004; 005.7 | en |
dc.title | Tuning Active Sampling Techniques for Evolutionary Learner from Big Data Sets: Review and Discussion | |
dc.type | Communication / Conférence | |
dc.description.abstracten | Big data processing is the new challenge for analytical, machine learning techniques. Many efforts are needed to scale both classic, advanced methods to the the mass of the provided data. Evolutionary learning algorithms (EAL) are robust, effective methods in solving a wide variety of complex learning problems. This paper discusses how to tune the active sampling techniques for EAL to deal with very large training data sets. It introduces the key decisions needed to design an effective active sampling strategy, review the main techniques used with evolutionary algorithms. Then, we discuss how they could be adapted to learn from big training data sets, present some research directions in this domain. | |
dc.identifier.citationpages | 1206-1213 | |
dc.relation.ispartoftitle | Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences | |
dc.relation.ispartofeditor | Didier El Baz, Julien Bourgeois | |
dc.relation.ispartofpublname | IEEE - Institute of Electrical and Electronics Engineers | |
dc.relation.ispartofpublcity | Piscataway, NJ | |
dc.relation.ispartofdate | 2016 | |
dc.subject.ddclabel | Informatique générale; Organisation des données | en |
dc.relation.ispartofisbn | 978-1-5090-2770-5 | |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0184 | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.date.updated | 2019-02-20T15:14:16Z | |
hal.identifier | hal-01448255 | * |
hal.version | 1 | * |
hal.update.action | updateFiles | * |
hal.update.action | updateMetadata | * |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |