• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Multi-dimensional signal approximation with sparse structured priors using split Bregman iterations

Isaac, Yoann; Barthélemy, Quentin; Gouy-Pailler, Cédric; Sebag, Michèle; Atif, Jamal (2017), Multi-dimensional signal approximation with sparse structured priors using split Bregman iterations, Signal Processing, 130, p. 389-402. 10.1016/j.sigpro.2016.07.013

Type
Article accepté pour publication ou publié
Date
2017
Journal name
Signal Processing
Volume
130
Publisher
Elsevier
Pages
389-402
Publication identifier
10.1016/j.sigpro.2016.07.013
Metadata
Show full item record
Author(s)
Isaac, Yoann
Laboratoire d'analyse des données et d'intelligence des systèmes [LADIS]
Barthélemy, Quentin
Mensia Technologies [Rennes]
Gouy-Pailler, Cédric cc
Laboratoire d'analyse des données et d'intelligence des systèmes [LADIS]
Sebag, Michèle
Laboratoire de Recherche en Informatique [LRI]
Atif, Jamal
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
This paper addresses the structurally constrained sparse decomposition of multi-dimensional signals onto overcomplete families of vectors, called dictionaries. The contribution of the paper is threefold. Firstly, a generic spatio-temporal regularization term is designed and used together with the standard ℓ1ℓ1 regularization term to enforce a sparse decomposition preserving the spatio-temporal structure of the signal. Secondly, an optimization algorithm based on the split Bregman approach is proposed to handle the associated optimization problem, and its convergence is analyzed. Our well-founded approach yields same accuracy as the other algorithms at the state of the art, with significant gains in terms of convergence speed. Thirdly, the empirical validation of the approach on artificial and real-world problems demonstrates the generality and effectiveness of the method. On artificial problems, the proposed regularization subsumes the Total Variation minimization and recovers the expected decomposition. On the real-world problem of electro-encephalography brainwave decomposition, the approach outperforms similar approaches in terms of P300 evoked potentials detection, using structured spatial priors to guide the decomposition.
Subjects / Keywords
Machine learning; Structured sparsity; Overcomplete representations; Analysis prior; Split Bregman; Fused-LASSO; EEG denoising

Related items

Showing items related by title and author.

  • Thumbnail
    Structured adaptive and random spinners for fast machine learning computations 
    Bojarski, Mariusz; Choromanska, Anna; Choromanski, Krzysztof; Fagan, Francois; Gouy-Pailler, Cédric; Morvan, Anne; Sakr, Nourhan; Sarlos, Tamas; Atif, Jamal (2017) Communication / Conférence
  • Thumbnail
    Graph-based Clustering under Differential Privacy 
    Pinot, Rafael; Morvan, Anne; Yger, Florian; Gouy-Pailler, Cédric; Atif, Jamal (2018) Communication / Conférence
  • Thumbnail
    Graph sketching-based Space-efficient Data Clustering 
    Morvan, Anne; Choromanski, Krzysztof; Gouy-Pailler, Cedric; Atif, Jamal (2018) Communication / Conférence
  • Thumbnail
    Theoretical evidence for adversarial robustness through randomization 
    Pinot, Rafaël; Meunier, Laurent; Araújo, Alexandre; Kashima, Hisashi; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
  • Thumbnail
    A unified view on differential privacy and robustness to adversarial examples 
    Pinot, Rafaël; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo