
Query-based learning of acyclic conditional preference networks from noisy data
Labernia, Fabien; Yger, Florian; Mayag, Brice; Atif, Jamal (2016), Query-based learning of acyclic conditional preference networks from noisy data, in Busa-Fekete, Róbert; Hüllermeier, Eyke; Mousseau, Vincent; Pfannschmidt, Karlson, From Multiple Criteria Decision Aid to Preference Learning : Proceedings of the DA2PL'2016 EURO Mini Conference, Paderborn University : Paderborn, p. 6
View/ Open
Type
Communication / ConférenceDate
2016Conference title
DA2PL'2016 EURO Mini ConferenceConference date
2016-11Conference city
PaderbornConference country
GermanyBook title
From Multiple Criteria Decision Aid to Preference Learning : Proceedings of the DA2PL'2016 EURO Mini ConferenceBook author
Busa-Fekete, Róbert; Hüllermeier, Eyke; Mousseau, Vincent; Pfannschmidt, KarlsonPublisher
Paderborn University
Published in
Paderborn
Number of pages
132Pages
6
Metadata
Show full item recordAuthor(s)
Labernia, FabienLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Yger, Florian

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mayag, Brice
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Atif, Jamal
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Conditional preference networks (CP-nets) provide a powerful, compact, and intuitive graphical tool to represent the preferences of a user. However learning such a structure is known to be a difficult problem due to its combinatorial nature. We propose in this paper a new, efficient, and robust query-based learning algorithm for acyclic CP-nets. In particular, our algorithm takes into account the incoherences in the user’s preferences or in noisy data by searching in a principled way the variables that condition the other ones. We provide complexity results of the algorithm, and demonstrate its efficiency through an empirical evaluation on synthetic and on real datasets.Subjects / Keywords
Preference learning; machine learning; artificial intelligenceRelated items
Showing items related by title and author.
-
Labernia, Fabien; Yger, Florian; Mayag, Brice; Atif, Jamal (2017) Article accepté pour publication ou publié
-
Labernia, Fabien; Zanuttini, Bruno; Mayag, Brice; Yger, Florian; Atif, Jamal (2017) Communication / Conférence
-
Labernia, Fabien (2018-09-27) Thèse
-
Pinot, Rafael; Morvan, Anne; Yger, Florian; Gouy-Pailler, Cédric; Atif, Jamal (2018) Communication / Conférence
-
Yamane, Ikko; Yger, Florian; Atif, Jamal; Sugiyama, Masashi (2018) Communication / Conférence