Time-Approximation Trade-offs for Inapproximable Problems
hal.structure.identifier | Institute for Computer Science and Control [Budapest] [SZTAKI] | |
dc.contributor.author | Bonnet, Édouard
HAL ID: 171728 ORCID: 0000-0002-1653-5822 | * |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Lampis, Michael
HAL ID: 182546 ORCID: 0000-0002-5791-0887 | * |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Paschos, Vangelis | * |
dc.date.accessioned | 2017-03-14T13:17:54Z | |
dc.date.available | 2017-03-14T13:17:54Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/16336 | |
dc.language.iso | en | en |
dc.subject | Approximation | en |
dc.subject | Complexity | en |
dc.subject | Polynomial and Subexponential Approximation | en |
dc.subject | Reduction | en |
dc.subject | Inapproximability | en |
dc.subject.ddc | 003 | en |
dc.title | Time-Approximation Trade-offs for Inapproximable Problems | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | In this paper we focus on problems which do not admit a constant-factor approximation in polynomial time and explore how quickly their approximability improves as the allowed running time is gradually increased from polynomial to (sub-)exponential. We tackle a number of problems: For MIN INDEPENDENT DOMINATING SET, MAX INDUCED PATH, FOREST and TREE, for any r(n), a simple, known scheme gives an approximation ratio of r in time roughly r^{n/r}. We show that, for most values of r, if this running time could be significantly improved the ETH would fail. For MAX MINIMAL VERTEX COVER we give a non-trivial sqrt{r}-approximation in time 2^{n/{r}}. We match this with a similarly tight result. We also give a log(r)-approximation for MIN ATSP in time 2^{n/r} and an r-approximation for MAX GRUNDY COLORING in time r^{n/r}. Furthermore, we show that MIN SET COVER exhibits a curious behavior in this super-polynomial setting: for any delta>0 it admits an m^delta-approximation, where m is the number of sets, in just quasi-polynomial time. We observe that if such ratios could be achieved in polynomial time, the ETH or the Projection Games Conjecture would fail. | en |
dc.identifier.citationpages | 22:1-22:14 | en |
dc.relation.ispartoftitle | 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016) | en |
dc.relation.ispartofeditor | Ollinger, Nicolas | |
dc.relation.ispartofeditor | Vollmer, Heribert | |
dc.relation.ispartofpublname | Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik | en |
dc.relation.ispartofpublcity | Wadern | en |
dc.relation.ispartofdate | 2016-02 | |
dc.relation.ispartofpages | 798 | en |
dc.relation.ispartofurl | 10.4230/LIPIcs.STACS.2016.0 | en |
dc.subject.ddclabel | Recherche opérationnelle | en |
dc.relation.ispartofisbn | 978-3-95977-001-9 | en |
dc.relation.conftitle | 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016) | en |
dc.relation.confdate | 2016-02 | |
dc.relation.confcity | Orléans | en |
dc.relation.confcountry | France | en |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.4230/LIPIcs.STACS.2016.22 | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | oui | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2017-03-14T12:56:03Z | |
hal.identifier | hal-01489450 | * |
hal.version | 1 | * |
hal.faultCode | The supplied format packaging is not supported by the server | |
hal.update.action | updateMetadata | * |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |