• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Parameterized Power Vertex Cover

Angel, Eric; Bampis, Evripidis; Escoffier, Bruno; Lampis, Michael (2016), Parameterized Power Vertex Cover, in Heggernes, Pinar, Graph-Theoretic Concepts in Computer Science, Springer Berlin Heidelberg : Berlin, p. 97-108. 10.1007/978-3-662-53536-3_9

Type
Communication / Conférence
Date
2016
Conference title
42nd International Workshop, WG 2016
Conference date
2016-06
Conference city
Istanbul
Conference country
Turkey
Book title
Graph-Theoretic Concepts in Computer Science
Book author
Heggernes, Pinar
Publisher
Springer Berlin Heidelberg
Published in
Berlin
ISBN
978-3-662-53535-6
Number of pages
307
Pages
97-108
Publication identifier
10.1007/978-3-662-53536-3_9
Metadata
Show full item record
Author(s)
Angel, Eric
Informatique, Biologie Intégrative et Systèmes Complexes [IBISC]
Bampis, Evripidis
Laboratoire d'Informatique de Paris 6 [LIP6]
Escoffier, Bruno
Laboratoire d'Informatique de Paris 6 [LIP6]
Lampis, Michael cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We study a recently introduced generalization of the Vertex Cover(VC) problem, called Power Vertex Cover(PVC). In this problem, each edge of the input graph is supplied with a positive integer demand. A solution is an assignment of (power) values to the vertices, so that for each edge one of its endpoints has value as high as the demand, and the total sum of power values assigned is minimized.We investigate how this generalization affects the complexity of Vertex Cover from the point of view of parameterized algorithms. On the positive side, when parameterized by the value of the optimal P, we give an O∗(1.274P)branching algorithm (O∗ is used to hide factors polynomial in the input size), and also an O∗(1.325P) algorithm for the more general asymmetric case of the problem, where the demand of each edge may differ for its two endpoints. When the parameter is the number of vertices k that receive positive value, we give O∗(1.619k) and O∗(kk) algorithms for the symmetric and asymmetric cases respectively, as well as a simple quadratic kernel for the asymmetric case.We also show that PVC becomes significantly harder than classical VC when parameterized by the graph’s treewidth t. More specifically, we prove that unless the ETH is false, there is no no(t)algorithm for PVC. We give a method to overcome this hardness by designing an FPT approximation scheme which obtains a (1+ϵ)-approximation to the optimal solution in time FPT in parameters t and 1/ϵ.
Subjects / Keywords
Parameterized complexity

Related items

Showing items related by title and author.

  • Thumbnail
    Parameterized Power Vertex Cover 
    Angel, Eric; Bampis, Evripidis; Escoffier, Bruno; Lampis, Michael (2018) Article accepté pour publication ou publié
  • Thumbnail
    Multistage Matchings 
    Bampis, Evripidis; Escoffier, Bruno; Lampis, Michael; Paschos, Vangelis (2018) Communication / Conférence
  • Thumbnail
    Approximation polynomiale avec garantie de performance pour l'optimisation multicritère 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2007) Chapitre d'ouvrage
  • Thumbnail
    On the hitting set of bundles problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2007) Document de travail / Working paper
  • Thumbnail
    On the Minimum Hitting Set of Bundles Problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2008) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo