Malliavin calculus for regularity structures: The case of gPAM
Cannizzaro, G.; Friz, Peter K.; Gassiat, Paul (2017), Malliavin calculus for regularity structures: The case of gPAM, Journal of Functional Analysis, 272, 1, p. 363-419. 10.1016/j.jfa.2016.09.024
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1511.08888v1Date
2017Journal name
Journal of Functional AnalysisVolume
272Number
1Publisher
Elsevier
Pages
363-419
Publication identifier
Metadata
Show full item recordAuthor(s)
Cannizzaro, G.Friz, Peter K.
Gassiat, Paul
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Malliavin calculus is implemented in the context of Hairer (2014) [16]. This involves some constructions of independent interest, notably an extension of the structure which accommodates a robust, and purely deterministic, translation operator, in L2L2-directions, between “models”. In the concrete context of the generalized parabolic Anderson model in 2D – one of the singular SPDEs discussed in the afore-mentioned article – we establish existence of a density at positive times.Subjects / Keywords
Regularity structures; Malliavin calculus; Generalized parabolic Anderson model; Singular SPDEsRelated items
Showing items related by title and author.
-
Bayer, Christian; Friz, Peter; Gassiat, Paul; Martin, Jorg; Stemper, Benjamin (2020) Article accepté pour publication ou publié
-
Réveillac, Anthony; Privault, Nicolas (2008) Article accepté pour publication ou publié
-
Diehl, Joscha; Friz, Peter K.; Gassiat, Paul (2017) Article accepté pour publication ou publié
-
Friz, Peter K.; Gassiat, Paul; Lions, Pierre-Louis; Souganidis, Panagiotis E. (2017) Article accepté pour publication ou publié
-
Friz, Peter K.; Gassiat, Paul; Pigato, Paolo (2021) Article accepté pour publication ou publié