Complexity and Approximability of Parameterized MAX-CSPs
Dell, Holger; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Mömke, Tobias (2015), Complexity and Approximability of Parameterized MAX-CSPs, in Husfeldt, Thore; Kanj, Iyad, 10th International Symposium on Parameterized and Exact Computation (IPEC 2015), Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik : Wadern, p. 294-306. 10.4230/LIPIcs.IPEC.2015.294
Type
Communication / ConférenceDate
2015Conference title
10th International Symposium on Parameterized and Exact Computation (IPEC 2015)Conference date
2015-09Conference city
PatrasConference country
GreeceBook title
10th International Symposium on Parameterized and Exact Computation (IPEC 2015)Book author
Husfeldt, Thore; Kanj, IyadPublisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Published in
Wadern
ISBN
978-3-939897-92-7
Pages
294-306
Publication identifier
Metadata
Show full item recordAuthor(s)
Dell, HolgerKim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Lampis, Michael

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mitsou, Valia
Institute for Computer Science and Control [Budapest] [SZTAKI]
Mömke, Tobias
Abstract (EN)
We study the optimization version of constraint satisfaction problems (Max-CSPs) in the framework of parameterized complexity; the goal is to compute the maximum fraction of constraints that can be satisfied simultaneously. In standard CSPs, we want to decide whether this fraction equals one. The parameters we investigate are structural measures, such as the treewidth or the clique-width of the variable-constraint incidence graph of the CSP instance.We consider Max-CSPs with the constraint types AND, OR, PARITY, and MAJORITY, and with various parameters k, and we attempt to fully classify them into the following three cases: 1. The exact optimum can be computed in FPT time. 2. It is W[1]-hard to compute the exact optimum, but there is a randomized FPT approximation scheme (FPTAS), which computes a (1−ϵ)-approximation in time f(k,ϵ)⋅poly(n). 3. There is no FPTAS unless FPT=W[1].For the corresponding standard CSPs, we establish FPT vs. W[1]-hardness results.Subjects / Keywords
Parameterized Approximation; Structural Parameters; Constraint SatisfactionRelated items
Showing items related by title and author.
-
Dell, Holger; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Mömke, Tobias (2017) Article accepté pour publication ou publié
-
Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota; Sikora, Florian (2019) Communication / Conférence
-
Sikora, Florian; Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota (2020) Article accepté pour publication ou publié
-
Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota (2022) Article accepté pour publication ou publié
-
Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota (2020) Communication / Conférence