• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Minimal Geodesics Along Volume-Preserving Maps, Through Semidiscrete Optimal Transport

Mérigot, Quentin; Mirebeau, Jean-Marie (2016), Minimal Geodesics Along Volume-Preserving Maps, Through Semidiscrete Optimal Transport, SIAM Journal on Numerical Analysis, 54, 6, p. 3465-3492. 10.1137/15M1017235

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1505.03306v1
Date
2016
Journal name
SIAM Journal on Numerical Analysis
Volume
54
Number
6
Publisher
SIAM
Pages
3465-3492
Publication identifier
10.1137/15M1017235
Metadata
Show full item record
Author(s)
Mérigot, Quentin

Mirebeau, Jean-Marie
Abstract (EN)
We introduce a numerical method for extracting minimal geodesics along the group of volume-preserving maps, equipped with the $L^2$ metric, which as observed by Arnold [Ann. Inst. Fourier (Grenoble), 16 (1966), pp. 319--361] solve the Euler equations of inviscid incompressible fluids. The method relies on the generalized polar decomposition of Brenier [Comm. Pure Appl. Math., 44 (1991), pp. 375--417], numerically implemented through semidiscrete optimal transport. It is robust enough to extract nonclassical, multivalued solutions of Euler's equations, for which the flow dimension---defined as the quantization dimension of Brenier's generalized flow---is higher than the domain dimension, a striking and unavoidable consequence of thismodel [A. I. Shnirelman, Geom. Funct. Anal., 4 (1994), pp. 586--620]. Our convergence results encompass this generalizedmodel, and our numerical experiments illustrate it for the first time in two space dimensions.
Subjects / Keywords
Euler equation; optimal transport; calculus of variation; quantization

Related items

Showing items related by title and author.

  • Thumbnail
    Minimal Stencils for Discretizations of Anisotropic PDEs Preserving Causality or the Maximum Principle 
    Mirebeau, Jean-Marie (2016) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of a Newton algorithm for semi-discrete optimal transport 
    Kitagawa, Jun; Mérigot, Quentin; Thibert, Boris (2019) Article accepté pour publication ou publié
  • Thumbnail
    Increasing the robustness and applicability of full-waveform inversion: An optimal transport distance strategy 
    Métivier, L.; Brossier, Romain; Mérigot, Quentin; Oudet, Édouard; Virieux, Jean (2016) Article accepté pour publication ou publié
  • Thumbnail
    Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion 
    Métivier, Ludovic; Brossier, Romain; Mérigot, Quentin; Oudet, Edouard; Virieux, Jean (2016) Article accepté pour publication ou publié
  • Thumbnail
    An optimal transport approach for seismic tomography: application to 3D full waveform inversion 
    Métivier, Ludovic; Brossier, Romain; Mérigot, Quentin; Oudet, Edouard; Virieux, Jean (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo