Show simple item record

hal.structure.identifier
dc.contributor.authorDenoyelle, Quentin*
hal.structure.identifier
dc.contributor.authorDuval, Vincent
HAL ID: 7243
ORCID: 0000-0002-7709-256X
*
hal.structure.identifier
dc.contributor.authorPeyré, Gabriel
HAL ID: 1211
*
dc.date.accessioned2017-03-15T14:54:35Z
dc.date.available2017-03-15T14:54:35Z
dc.date.issued2015
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/16358
dc.language.isoenen
dc.subjectBLASSO programen
dc.subject.ddc520en
dc.titleAsymptotic of Sparse Support Recovery for Positive Measuresen
dc.typeCommunication / Conférencetion / Conférence
dc.description.abstractenWe study sparse spikes deconvolution over the space of Radon measures when the input measure is a finite sum of positive Dirac masses using the BLASSO convex program. We focus on the recovery properties of the support and the amplitudes of the initial measure in the presence of noise when the minimum separation distance t of the input measure (the minimum distance between two spikes) tends to zero. We show that when ||ω||2/λ, ||ω||2/t2N-1 and λ/t2N-1 are small enough (where λ is the regularization parameter, ω the noise and N the number of spikes), which corresponds roughly to a sufficient signal-to-noise ratio and a noise level and a regularization parameter small enough with respect to the minimum separation distance, there exists a unique solution to the BLASSO program with exactly the same number of spikes as the original measure. We provide an upper bound on the error with respect to the initial measure. As a by-product, we show that the amplitudes and positions of the spikes of the solution both converge towards those of the input measure when λ and ω drop to zero faster than t2N-1.en
dc.relation.isversionofjnlnameJournal of Physics: Conference Series
dc.relation.isversionofjnlvol657en
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpages012013en
dc.relation.isversionofdoi10.1088/1742-6596/657/1/012013en
dc.identifier.urlsitehttp://dx.doi.org/10.1088/1742-6596/657/1/012013en
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.relation.conftitle5th International Workshop on New Computational Methods for Inverse Problems (NCMIP2015)
dc.relation.confdate2015-05
dc.relation.confcityCachan
dc.relation.confcountryFrance
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2017-03-09T14:39:20Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record