• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Entropic metric alignment for correspondence problems

Solomon, Justin; Peyré, Gabriel; Kim, Vladimir G.; Sra, Suvrit (2016), Entropic metric alignment for correspondence problems, 43rd international conference and exhibition on Computer Graphics & Interactive Techniques (SIGGRAPH 2016), 2016-07, Anaheim, Etats-Unis

Type
Communication / Conférence
External document link
https://hal.archives-ouvertes.fr/hal-01305808
Date
2016
Conference title
43rd international conference and exhibition on Computer Graphics & Interactive Techniques (SIGGRAPH 2016)
Conference date
2016-07
Conference city
Anaheim
Conference country
Etats-Unis
Journal name
ACM Transactions on Graphics
Volume
35
Number
4
Publisher
Association for Computing Machinery
Pages
n°72
Publication identifier
10.1145/2897824.2925903
Metadata
Show full item record
Author(s)
Solomon, Justin

Peyré, Gabriel

Kim, Vladimir G.

Sra, Suvrit
Abstract (EN)
Many shape and image processing tools rely on computation of correspondences between geometric domains. Efficient methods that stably extract "soft" matches in the presence of diverse geometric structures have proven to be valuable for shape retrieval and transfer of labels or semantic information. With these applications in mind, we present an algorithm for probabilistic correspondence that optimizes an entropy-regularized Gromov-Wasserstein (GW) objective. Built upon recent developments in numerical optimal transportation, our algorithm is compact, provably convergent, and applicable to any geometric domain expressible as a metric measure matrix. We provide comprehensive experiments illustrating the convergence and applicability of our algorithm to a variety of graphics tasks. Furthermore, we expand entropic GW correspondence to a framework for other matching problems, incorporating partial distance matrices, user guidance, shape exploration, symmetry detection, and joint analysis of more than two domains. These applications expand the scope of entropic GW correspondence to major shape analysis problems and are stable to distortion and noise.
Subjects / Keywords
entropy; Gromov-Wasserstein; optimal transport; matching

Related items

Showing items related by title and author.

  • Thumbnail
    Convergence of Entropic Schemes for Optimal Transport and Gradient Flows 
    Carlier, Guillaume; Duval, Vincent; Peyré, Gabriel; Schmitzer, Bernhard (2017) Article accepté pour publication ou publié
  • Thumbnail
    Entropic Wasserstein Gradient Flows 
    Peyré, Gabriel (2015) Article accepté pour publication ou publié
  • Thumbnail
    Convolutional wasserstein distances: efficient optimal transportation on geometric domains 
    Solomon, Justin; De Goes, Fernando; Peyré, Gabriel; Cuturi, Marco; Butscher, Adrian; Nguyen, Andy; Du, Tao; Guibas, Leonidas (2015) Article accepté pour publication ou publié
  • Thumbnail
    Gromov-Wasserstein Averaging of Kernel and Distance Matrices 
    Peyré, Gabriel; Cuturi, Marco; Solomon, Justin (2016) Communication / Conférence
  • Thumbnail
    Iterative Bregman Projections for Regularized Transportation Problems 
    Benamou, Jean-David; Carlier, Guillaume; Cuturi, Marco; Nenna, Luca; Peyré, Gabriel (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo