Solving the Temporal Knapsack Problem via Recursive Dantzig–Wolfe Reformulation
Caprara, Alberto; Furini, Fabio; Malaguti, Enrico; Traversi, Emiliano (2016), Solving the Temporal Knapsack Problem via Recursive Dantzig–Wolfe Reformulation, Information Processing Letters, 116, 5, p. 379-386. 10.1016/j.ipl.2016.01.008
Type
Article accepté pour publication ou publiéDate
2016Journal name
Information Processing LettersVolume
116Number
5Publisher
Elsevier
Pages
379-386
Publication identifier
Metadata
Show full item recordAuthor(s)
Caprara, AlbertoFurini, Fabio
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Malaguti, Enrico
Traversi, Emiliano
Laboratoire d'Informatique de Paris-Nord [LIPN]
Abstract (EN)
The Temporal Knapsack Problem (TKP) is a generalization of the standard Knapsack Problem where a time horizon is considered, and each item consumes the knapsack capacity during a limited time interval only. In this paper we solve the TKP using what we call a Recursive Dantzig–Wolfe Reformulation (DWR) method. The generic idea of Recursive DWR is to solve a Mixed Integer Program (MIP) by recursively applying DWR, i.e., by using DWR not only for solving the original MIP but also for recursively solving the pricing sub-problems. In a binary case (like the TKP), the Recursive DWR method can be performed in such a way that the only two components needed during the optimization are a Linear Programming solver and an algorithm for solving Knapsack Problems. The Recursive DWR allows us to solve Temporal Knapsack Problem instances through computation of strong dual bounds, which could not be obtained by exploiting the best-known previous approach based on DWR.Subjects / Keywords
Combinatorial Problems; Temporal Knapsack Problem; Dantzig–Wolfe Reformulation; Mixed integer programsRelated items
Showing items related by title and author.
-
Bergner, Martin; Caprara, Alberto; Ceselli, Alberto; Furini, Fabio; Lübbecke, Marco E.; Malaguti, Enrico; Traversi, Emiliano (2015) Article accepté pour publication ou publié
-
D’Ambrosio, Claudia; Furini, Fabio; Monaci, Michele; Traversi, Emiliano (2018) Article accepté pour publication ou publié
-
Furini, Fabio; Monaci, Michele; Traversi, Emiliano (2018) Article accepté pour publication ou publié
-
Létocart, Lucas; Furini, Fabio; Liberti, Leo; Traversi, Emiliano; Bettiol, Enrico; Rinaldi, Francesco (2018) Article accepté pour publication ou publié
-
Furini, Fabio; Malaguti, Enrico; Santini, Alberto (2018) Article accepté pour publication ou publié