Show simple item record

hal.structure.identifier
dc.contributor.authorLampart, Jonas
HAL ID: 174062
ORCID: 0000-0002-6980-3800
hal.structure.identifier
dc.contributor.authorLewin, Mathieu
HAL ID: 1466
ORCID: 0000-0002-1755-0207
dc.date.accessioned2017-03-18T10:30:52Z
dc.date.available2017-03-18T10:30:52Z
dc.date.issued2015
dc.identifier.issn0010-3616
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/16389
dc.language.isoenen
dc.subjectRAGE theoremen
dc.subject.ddc520en
dc.titleA Many-Body RAGE Theoremen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe prove a generalized version of the RAGE theorem for N-body quantum systems. The result states that only bound states of systems with 0⩽n⩽N particles persist in the long time average. The limit is formulated by means of an appropriate weak topology for many-body systems, which was introduced by the second author in a previous work, and is based on reduced density matrices. This topology is connected to the weak-* topology of states on the algebras of canonical commutation or anti-commutation relations, and we give a formulation of our main result in this setting.en
dc.relation.isversionofjnlnameCommunications in Mathematical Physics
dc.relation.isversionofjnlvol340en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2015
dc.relation.isversionofjnlpages1171-1186en
dc.relation.isversionofdoi10.1007/s00220-015-2458-xen
dc.identifier.urlsitehttp://arxiv.org/abs/1503.00496v2en
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2017-03-10T13:32:28Z
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record