• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Bounded Correctors in Almost Periodic Homogenization

Armstrong, Scott N.; Gloria, Antoine; Kuusi, Tuomo (2016), Bounded Correctors in Almost Periodic Homogenization, Archive for Rational Mechanics and Analysis, 222, 1, p. 393-426. 10.1007/s00205-016-1004-0

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1509.08390v2
Date
2016
Journal name
Archive for Rational Mechanics and Analysis
Volume
222
Number
1
Publisher
Springer
Pages
393-426
Publication identifier
10.1007/s00205-016-1004-0
Metadata
Show full item record
Author(s)
Armstrong, Scott N.

Gloria, Antoine

Kuusi, Tuomo
Abstract (EN)
We show that certain linear elliptic equations (and systems) in divergence form with almost periodic coefficients have bounded, almost periodic correctors. This is proved under a new condition we introduce which quantifies the almost periodic assumption and includes (but is not restricted to) the class of smooth, quasiperiodic coefficient fields which satisfy a Diophantine-type condition previously considered by Kozlov (Mat Sb (N.S), 107(149):199–217, 1978). The proof is based on a quantitative ergodic theorem for almost periodic functions combined with the new regularity theory recently introduced by Armstrong and Shen (Pure Appl Math, 2016) for equations with almost periodic coefficients. This yields control on spatial averages of the gradient of the corrector, which is converted into estimates on the size of the corrector itself via a multiscale Poincaré-type inequality.
Subjects / Keywords
Analysis of PDEs

Related items

Showing items related by title and author.

  • Thumbnail
    Quantitative Analysis of Boundary Layers in Periodic Homogenization 
    Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe; Prange, Christophe (2017) Article accepté pour publication ou publié
  • Thumbnail
    Mesoscopic Higher Regularity and Subadditivity in Elliptic Homogenization 
    Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe (2016) Article accepté pour publication ou publié
  • Thumbnail
    Lipschitz Estimates in Almost-Periodic Homogenization 
    Armstrong, Scott N.; Shen, Zhongwei (2016) Article accepté pour publication ou publié
  • Thumbnail
    The additive structure of elliptic homogenization 
    Armstrong, Scott N.; Kuusi, Tuomo; Mourrat, Jean-Christophe (2017) Article accepté pour publication ou publié
  • Thumbnail
    Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications 
    Lions, Pierre-Louis; Souganidis, Panagiotis E. (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo