• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Scoring Rules for the Allocation of Indivisible Goods

Baumeister, Dorothea; Bouveret, Sylvain; Lang, Jérôme; Nguyen, Nhan-Tam; Nguyen, Trung Thanh; Rothe, Jörg (2014), Scoring Rules for the Allocation of Indivisible Goods, in Schaub, Torsten; Friedrich, Gerhard; O'Sullivan, Barry, ECAI'14 Proceedings of the Twenty-first European Conference on Artificial Intelligence, Ios Press : Amsterdam, p. 75-80. 10.3233/978-1-61499-419-0-75

Type
Communication / Conférence
Date
2014
Conference title
21st European Conference on Artificial Intelligence (ECAI'14)
Conference date
2014-08
Conference city
Prague
Conference country
Czech Republic
Book title
ECAI'14 Proceedings of the Twenty-first European Conference on Artificial Intelligence
Book author
Schaub, Torsten; Friedrich, Gerhard; O'Sullivan, Barry
Publisher
Ios Press
Published in
Amsterdam
ISBN
978-1-61499-418-3
Number of pages
1232
Pages
75-80
Publication identifier
10.3233/978-1-61499-419-0-75
Metadata
Show full item record
Author(s)
Baumeister, Dorothea

Bouveret, Sylvain cc
Institut national Polytechnique de Grenoble [INP GRENOBLE]
Lang, Jérôme
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Nguyen, Nhan-Tam

Nguyen, Trung Thanh

Rothe, Jörg
Abstract (EN)
We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents' preferences over sets of goods are additive, but that the input is ordinal: each agent simply ranks single goods. Similarly to (positional) scoring rules in voting, a scoring vector s = (s1,...,sm) consists of m nonincreasing nonnegative weights, where si is the score of a good assigned to an agent who ranks it in position i. The global score of an allocation for an agent is the sum of the scores of the goods assigned to her. The social welfare of an allocation is the aggregation of the scores of all agents, for some aggregation function * such as, typically, + or min. The rule associated with s and * maps a profile to (one of) the allocation(s) maximizing social welfare. After defining this family of rules, and focusing on some key examples, we investigate some of the social-choice-theoretic properties of this family of rules, such as various kinds of monotonicity, separability, envy-freeness, and Pareto efficiency.
Subjects / Keywords
social choice; voting

Related items

Showing items related by title and author.

  • Thumbnail
    Positional scoring-based allocation of indivisible goods 
    Baumeister, Dorothea; Bouveret, Sylvain; Lang, Jérôme; Nguyen, Trung Thanh; Rothe, Jörg; Saffidine, Abdallah (2017) Article accepté pour publication ou publié
  • Thumbnail
    Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods 
    Bouveret, Sylvain; Endriss, Ulle; Lang, Jérôme (2010) Communication / Conférence
  • Thumbnail
    Fair Division of Indivisible Goods 
    Lang, Jérôme; Rothe, Jörg (2016) Chapitre d'ouvrage
  • Thumbnail
    A General Elicitation-Free Protocol for Allocating Indivisible Goods 
    Bouveret, Sylvain; Lang, Jérôme (2011) Communication / Conférence
  • Thumbnail
    Efficiency and envy-freeness in fair division of indivisible goods: logical representation and complexity 
    Bouveret, Sylvain; Lang, Jérôme (2005) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo