• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Metric gradient flows with state dependent functionals: the Nash-MFG equilibrium flows and their numerical schemes

Turinici, Gabriel (2017), Metric gradient flows with state dependent functionals: the Nash-MFG equilibrium flows and their numerical schemes, Nonlinear Analysis, 165, p. 163-181. 10.1016/j.na.2017.10.002

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01528480
Date
2017
Journal name
Nonlinear Analysis
Volume
165
Publisher
Elsevier
Pages
163-181
Publication identifier
10.1016/j.na.2017.10.002
Metadata
Show full item record
Author(s)
Turinici, Gabriel cc
Abstract (EN)
We investigate the convergence of a relaxed version of the best reply numerical schemes (also known as best response or fictitious play) used to find Nash-mean field games equilibriums. This leads us to consider evolution equations in metric spaces similar to gradient flows except that the functional to be differentiated depends on the current point; these are called equilibrium flows. We give two definitions of solutions and prove that as the time step tends to zero the interpolated (`a la de Giorgi) numerical curves converge to equilibrium flows. As a by-product we obtain a sufficient condition for the uniqueness of a mean field games equilibrium. We close with applications to congestion and vaccination mean field games.
Subjects / Keywords
gradient flows; mean field games; vaccination games

Related items

Showing items related by title and author.

  • Thumbnail
    Nash-MFG equilibrium in a SIR model with time dependent newborn vaccination 
    Hubert, Emma; Turinici, Gabriel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces 
    Legendre, Guillaume; Turinici, Gabriel (2017) Article accepté pour publication ou publié
  • Thumbnail
    High order variational numerical schemes with application to Nash -MFG vaccination games 
    Laguzet, Laetitia (2018) Article accepté pour publication ou publié
  • Thumbnail
    Individual Vaccination as Nash Equilibrium in a SIR Model with Application to the 2009–2010 Influenza A(H1N1) Epidemic in France 
    Laguzet, Laetitia; Turinici, Gabriel (2015) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of Entropic Schemes for Optimal Transport and Gradient Flows 
    Carlier, Guillaume; Duval, Vincent; Peyré, Gabriel; Schmitzer, Bernhard (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo