Nash-MFG equilibrium in a SIR model with time dependent newborn vaccination
Hubert, Emma; Turinici, Gabriel (2018), Nash-MFG equilibrium in a SIR model with time dependent newborn vaccination, Ricerche di Matematica, 67, 1, p. 227-246. 10.1007/s11587-018-0365-0
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01389584Date
2018Journal name
Ricerche di MatematicaVolume
67Number
1Publisher
Springer
Pages
227-246
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study the newborn, non compulsory, vaccination in a SIR model with vital dynamics. The evolution of each individual is modeled as a Markov chain.His/Her vaccination decision optimizes a criterion depending on the time-dependent aggregate (societal) vaccination rate and the future epidemic dynamics. We prove the existence of a Nash - Mean Field Games equilibrium among all individuals in the population. Then we propose a novel numerical approach to find the equilibrium and test it numerically.Subjects / Keywords
Nash equilibrium; SIR model; vaccination eficacy; individual vaccination; vaccination games; vaccination; Mean Field GamesRelated items
Showing items related by title and author.
-
Laguzet, Laetitia; Turinici, Gabriel (2015) Article accepté pour publication ou publié
-
Turinici, Gabriel (2017) Article accepté pour publication ou publié
-
Elie, Romuald; Hubert, Emma; Turinici, Gabriel (2020) Article accepté pour publication ou publié
-
Laguzet, Laetitia (2018) Article accepté pour publication ou publié
-
Laguzet, Laetitia; Turinici, Gabriel (2015) Article accepté pour publication ou publié