• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Adaptive multiresolution analysis based on anisotropic triangulations

Cohen, Albert; Dyn, Nina; Hecht, Frédéric; Mirebeau, Jean-Marie (2012), Adaptive multiresolution analysis based on anisotropic triangulations, Mathematics of Computation, 81, 278, p. 789-810. 10.1090/S0025-5718-2011-02495-6

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-00387804/
Date
2012
Journal name
Mathematics of Computation
Volume
81
Number
278
Publisher
National Academy of Sciences-National Research Council
Pages
789-810
Publication identifier
10.1090/S0025-5718-2011-02495-6
Metadata
Show full item record
Author(s)
Cohen, Albert
Laboratoire Jacques-Louis Lions [LJLL]
Dyn, Nina

Hecht, Frédéric
Laboratoire Jacques-Louis Lions [LJLL]
Mirebeau, Jean-Marie
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
A simple greedy refinement procedure for the generation of data-adapted triangulations is proposed and studied. Given a function ƒ of two variables, the algorithm produces a hierarchy of triangulations (Dj )j≥0 and piecewise polynomial approximations of ƒ on these triangulations. The refinement procedure consists in bisecting a triangle Τ in a direction which is chosen so as to minimize the local approximation error in some prescribed norm between ƒ and its piecewise polynomial approximation after Τ is bisected. The hierarchical structure allows us to derive various approximation tools such as multiresolution analysis, wavelet bases, adaptive triangulations based either on greedy or optimal CART trees, as well as a simple encoding of the corresponding triangulations. We give a general proof of convergence in the Lp norm of all these approximations. Numerical tests performed in the case of piecewise linear approximation of functions with analytic expressions or of numerical images illustrate the fact that the refinement procedure generates triangles with an optimal aspect ratio (which is dictated by the local Hessian of ƒ in case of C2 functions).
Subjects / Keywords
mathématiques; Numerical Analysis

Related items

Showing items related by title and author.

  • Thumbnail
    Greedy bisection generates optimally adapted triangulations 
    Cohen, Albert; Mirebeau, Jean-Marie (2012) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive, Anisotropic and Hierarchical cones of Discrete Convex functions 
    Mirebeau, Jean-Marie (2016) Article accepté pour publication ou publié
  • Thumbnail
    Vessel Extraction Using Anisotropic Minimal Paths and Path Score 
    Chen, Da; Cohen, Laurent D.; Mirebeau, Jean-Marie (2014) Communication / Conférence
  • Thumbnail
    Vessel Tree Extraction using Radius-Lifted Keypoints Searching Scheme and Anisotropic Fast Marching Method 
    Chen, Da; Mirebeau, Jean-Marie; Cohen, Laurent D. (2016) Article accepté pour publication ou publié
  • Thumbnail
    Finsler Geodesic Evolution Model for Region based Active Contours 
    Chen, Da; Mirebeau, Jean-Marie; Cohen, Laurent D. (2016) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo