Show simple item record

hal.structure.identifierDipartimento di Matematica Applicata [Firenze] [DMA]
dc.contributor.authorde Pascale, Luigi*
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
hal.structure.identifierCentre de Recherche Cardiovasculaire de Lariboisiere
dc.contributor.authorLouet, Jean
HAL ID: 11348
*
dc.date.accessioned2017-11-02T14:28:31Z
dc.date.available2017-11-02T14:28:31Z
dc.date.issued2017-08
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/16901
dc.language.isoenen
dc.subjectDuality theoryen
dc.subjectOptimal transporten
dc.subjectCyclical Monotonicityen
dc.subjectInfinite Wasserstein distanceen
dc.subject.ddc515en
dc.titleA study of the dual problem of the one-dimensional L-infinity optimal transport problem with applicationsen
dc.typeDocument de travail / Working paper
dc.description.abstractenThe Monge-Kantorovich problem for the infinite Wasserstein distance presents several peculiarities. Among them the lack of convexity and then of a direct duality. We study in dimension 1 the dual problem introduced by Barron, Bocea and Jensen. We construct a couple of Kantorovich potentials which is ''as less trivial as possible''. More precisely, we build a potential which is non constant around any point that the plan which is locally optimal moves at maximal distance. As an application, we show that the set of points which are displaced to maximal distance by a locally optimal transport plan is minimal.en
dc.identifier.citationpages17en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-01504249en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2017-08
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2017-11-02T14:24:30Z
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record