• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On the total variation Wasserstein gradient flow and the TV-JKO scheme

Carlier, Guillaume; Poon, Clarice (2019), On the total variation Wasserstein gradient flow and the TV-JKO scheme, ESAIM. Control, Optimisation and Calculus of Variations, 25, p. 21. 10.1051/cocv/2018042

View/Open
tv-wass-flow4.pdf (335.0Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
ESAIM. Control, Optimisation and Calculus of Variations
Volume
25
Publisher
EDP Sciences
Pages
21
Publication identifier
10.1051/cocv/2018042
Metadata
Show full item record
Author(s)
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Poon, Clarice
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Department of Applied Mathematics and Theoretical Physics [DAMTP]
Abstract (EN)
We study the JKO scheme for the total variation, characterize the optimizers, prove some of their qualitative properties (in particular a sort of maximum principle and the regularity of level sets). We study in detail the case of step functions. Finally, in dimension one, we establish convergence as the time step goes to zero to a solution of a fourth-order nonlinear evolution equation.
Subjects / Keywords
fourth-order evolution equations; JKO scheme; total variation; Wasserstein gradient flows

Related items

Showing items related by title and author.

  • Thumbnail
    Total Variation Denoising and Support Localization of the Gradient 
    Chambolle, Antonin; Duval, Vincent; Peyré, Gabriel; Poon, Clarice (2016) Communication / Conférence
  • Thumbnail
    Geometric properties of solutions to the total variation denoising problem 
    Chambolle, Antonin; Duval, Vincent; Peyré, Gabriel; Poon, Clarice (2016) Article accepté pour publication ou publié
  • Thumbnail
    Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces 
    Legendre, Guillaume; Turinici, Gabriel (2017) Article accepté pour publication ou publié
  • Thumbnail
    An augmented Lagrangian approach to Wasserstein gradient flows and applications 
    Benamou, Jean-David; Carlier, Guillaume; Laborde, Maxime (2016) Article accepté pour publication ou publié
  • Thumbnail
    Wasserstein gradient flow of the Fisher information from a non-smooth convex minimization viewpoint 
    Carlier, Guillaume; Benamou, Jean-David; Matthes, Daniel (2023) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo