An augmented Lagrangian approach to Wasserstein gradient flows and applications
Benamou, Jean-David; Carlier, Guillaume; Laborde, Maxime (2016), An augmented Lagrangian approach to Wasserstein gradient flows and applications, ESAIM: Proceedings and Surveys, 54, p. 1-17. 10.1051/proc/201654001
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-01245184Date
2016Nom de la revue
ESAIM: Proceedings and SurveysVolume
54Éditeur
EDP Sciences
Pages
1-17
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
Taking advantage of the Benamou-Brenier dynamic formulation of optimal transport, we propose a convex formulation for each step of the JKO scheme for Wasserstein gradient flows which can be attacked by an augmented Lagrangian method which we call the ALG2-JKO scheme. We test the algorithm in particular on the porous medium equation. We also consider a semi implicit variant which enables us to treat nonlocal interactions as well as systems of interacting species. Regarding systems, we can also use the ALG2-JKO scheme for the simulation of crowd motion models with several species.Mots-clés
Benamou-Brenier formulation; augmented Lagrangian; non-linear diffusion; granular media; systems; crowd motions; Wasserstein gradi-ent flowsPublications associées
Affichage des éléments liés par titre et auteur.
-
Benamou, Jean-David; Carlier, Guillaume; Bonne, Nicolas (2013) Rapport
-
Benamou, Jean-David; Carlier, Guillaume (2015) Article accepté pour publication ou publié
-
Benamou, Jean-David; Carlier, Guillaume; Marino, Simone; Nenna, Luca (2019) Article accepté pour publication ou publié
-
Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2019) Article accepté pour publication ou publié
-
Laborde, Maxime (2016-12) Thèse