A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts
Carlier, Guillaume; Laborde, Maxime (2016), A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts, Nonlinear Analysis. Theory, Methods & Applications, 150, p. 1-18. 10.1016/j.na.2016.10.026
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01332356Date
2016-06Journal name
Nonlinear Analysis. Theory, Methods & ApplicationsVolume
150Publisher
Pergamon Press
Pages
1-18
Publication identifier
Metadata
Show full item recordAuthor(s)
Carlier, GuillaumeCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Laborde, Maxime
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We prove an existence result for nonlinear diffusion equations in the presence of a nonlocal density-dependent drift which is not necessarily potential. The proof is constructive and based on the Helmholtz decomposition of the drift and a splitting scheme. The splitting scheme combines transport steps by the divergence-free part of the drift and semi-implicit minimization steps à la Jordan-Kinderlherer Otto to deal with the potential part.Subjects / Keywords
Helmholtz decomposition; nonlin-ear diffusions; splitting; nonlocal drift; Wasserstein gradient flows; Jordan-Kinderlehrer-Otto schemeRelated items
Showing items related by title and author.
-
Carlier, Guillaume; Laborde, Maxime (2015-06) Document de travail / Working paper
-
An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems Gallouët, Thomas; Laborde, Maxime; Monsaingeon, Léonard (2019) Article accepté pour publication ou publié
-
Benamou, Jean-David; Carlier, Guillaume; Laborde, Maxime (2016) Article accepté pour publication ou publié
-
Buttazzo, Giuseppe; Carlier, Guillaume; Laborde, Maxime (2018) Article accepté pour publication ou publié
-
Carlier, Guillaume; Chizat, Lenaic; Laborde, Maxime (2022) Document de travail / Working paper