Construction of a stable periodic solution to a semilinear heat equation with a prescribed profile
Mahmoudi, Fethi; Nouaili, Nejla; Hatem, Zaag (2016), Construction of a stable periodic solution to a semilinear heat equation with a prescribed profile, Nonlinear Analysis. Theory, Methods & Applications, 131, p. 300–324. 10.1016/j.na.2015.09.002
Type
Article accepté pour publication ou publiéDate
2016Journal name
Nonlinear Analysis. Theory, Methods & ApplicationsVolume
131Publisher
Pergamon Press
Pages
300–324
Publication identifier
Metadata
Show full item recordAbstract (EN)
We construct a periodic solution to the semilinear heat equation with power nonlinearity, in one space dimension, which blows up in finite time T only at one blow-up point. We also give a sharp description of its blow-up profile. The proof relies on the reduction of the problem to a finite dimensional one and the use of index theory to conclude. Thanks to the geometrical interpretation of the finite-dimensional parameters in terms of the blow-up time and blow-up point, we derive the stability of the constructed solution with respect to initial data.Subjects / Keywords
periodic semilinear heat equation; Blow-up profileRelated items
Showing items related by title and author.
-
Nouaili, Nejla; Zaag, Hatem (2015) Article accepté pour publication ou publié
-
Zaag, Hatem; Nouaili, Nejla (2010) Article accepté pour publication ou publié
-
Nouaili, Nejla; Zaag, Hatem (2015) Article accepté pour publication ou publié
-
Nouaili, Nejla; Zaag, Hatem (2018) Article accepté pour publication ou publié
-
Construction of a blow-up solution for the Complex Ginzburg-Landau equation in a critical case, β≠0 Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem (2022) Document de travail / Working paper