
Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders
Bernard, Patrick; Kaloshin, Vadim; Zhang, K. (2017), Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders, Acta Mathematica, 217, 1, p. 1-79. 10.1007/s11511-016-0141-5
Type
Article accepté pour publication ou publiéDate
2017Journal name
Acta MathematicaVolume
217Number
1Publisher
F. & G. Beijer
Pages
1-79
Publication identifier
Metadata
Show full item recordAuthor(s)
Bernard, Patrick
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Kaloshin, Vadim
Zhang, K.

Abstract (EN)
We prove a form of Arnold diffusion in the a-priori stable case. LetH0(p)+ϵH1(θ,p,t),θ∈Tn,p∈Bn,t∈T=R/T,be a nearly integrable system of arbitrary degrees of freedom n⩾2 with a strictly convex H0. We show that for a “generic” ϵH1, there exists an orbit (θ,p) satisfying∥p(t)−p(0)∥>l(H1)>0,where l(H1) is independent of ϵ. The diffusion orbit travels along a codimension-1 resonance, and the only obstruction to our construction is a finite set of additional resonances.For the proof we use a combination of geometric and variational methods, and manage to adapt tools which have recently been developed in the a-priori unstable case.Subjects / Keywords
Arnold diffusionRelated items
Showing items related by title and author.
-
Bounemoura, Abed; Kaloshin, Vadim (2014) Article accepté pour publication ou publié
-
Bernard, Patrick (2010) Article accepté pour publication ou publié
-
Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem Féjoz, Jacques; Guardia, Marcel; Kaloshin, Vadim; Roldán, Pablo (2016) Article accepté pour publication ou publié
-
Féjoz, Jacques; Guardia, Marcel; Kaloshin, Vadim; Roldán, Pablo (2011) Document de travail / Working paper
-
Bernard, Patrick (2002) Article accepté pour publication ou publié