Borell's formula on a Riemannian manifold and applications
dc.contributor.author | Lehec, Joseph
HAL ID: 11520 ORCID: 0000-0001-6182-9427 | |
dc.date.accessioned | 2017-11-27T14:34:45Z | |
dc.date.available | 2017-11-27T14:34:45Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/17067 | |
dc.language.iso | en | en |
dc.subject | Borell | |
dc.subject | Riemannian | |
dc.subject.ddc | 519 | en |
dc.title | Borell's formula on a Riemannian manifold and applications | |
dc.type | Chapitre d'ouvrage | |
dc.description.abstracten | Borell's formula is a stochastic variational formula for the log-Laplace transform of a function of a Gaussian vector. We establish an extension of this to the Riemannian setting and give a couple of applications, including a new proof of a convolution inequality on the sphere due to Carlen, Lieb and Loss. | |
dc.identifier.citationpages | 267-284 | |
dc.relation.ispartoftitle | Convexity and Concentration | |
dc.relation.ispartofeditor | Carlen E., Madiman M., Werner E. | |
dc.relation.ispartofpublname | Springer | |
dc.relation.ispartofpublcity | Berlin Heidelberg | |
dc.relation.ispartofdate | 2017 | |
dc.relation.ispartofurl | 10.1007/978-1-4939-7005-6 | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.ispartofisbn | 978-1-4939-7004-9 | |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.1007/978-1-4939-7005-6_9 | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.date.updated | 2017-12-15T17:15:07Z |