
Wardrop equilibria : long-term variant, degenerate anisotropic PDEs and numerical approximations
Hatchi, Roméo (2017), Wardrop equilibria : long-term variant, degenerate anisotropic PDEs and numerical approximations, in Santambrogio, Filippo; Champion, Thierry; Carlier, Guillaume; Rumpf, Martin; Oudet, Édouard; Bergounioux, Maïtine, Topological Optimization and Optimal Transport, De Gruyter, p. 257-280
View/ Open
Type
Chapitre d'ouvrageDate
2017Book title
Topological Optimization and Optimal TransportBook author
Santambrogio, Filippo; Champion, Thierry; Carlier, Guillaume; Rumpf, Martin; Oudet, Édouard; Bergounioux, MaïtinePublisher
De Gruyter
ISBN
9783110430509
Pages
257-280
Metadata
Show full item recordAbstract (EN)
As shown in [15], under some structural assumptions, working on congested traffic problems in general and increasingly dense networks leads, at the limit by Γ-convergence, to continuous minimization problems posed on measures on generalized curves. Here, we show the equivalence with another problem that is the variational formulation of an anisotropic, degenerate and elliptic PDE. For particular cases, we prove a Sobolev regularity result for the minimizers of the minimization problem despite the strong degeneracy and anisotropy of the Euler-Lagrange equation of the dual. We extend the analysis of [6] to the general case. Finally, we use the method presented in [5] to make numerical simulations.Subjects / Keywords
traffic congestion; Wardrop equilibrium; generalized curves; anisotropic and degenerate PDEs; augmented LagrangianRelated items
Showing items related by title and author.
-
Hatchi, Roméo (2015) Document de travail / Working paper
-
Carlier, Guillaume; Brasco, Lorenzo (2013) Article accepté pour publication ou publié
-
Dubecq, Simon (2013-01) Thèse
-
Carrère, Amélie (2020-06-03) Thèse
-
Bonsang, Éric; Schoenmaeckers, J. (2015) Chapitre d'ouvrage