Show simple item record

dc.contributor.authorHatchi, Roméo
dc.date.accessioned2017-11-28T15:02:34Z
dc.date.available2017-11-28T15:02:34Z
dc.date.issued2015
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17094
dc.language.isoenen
dc.subjectΓ-convergence
dc.subjecttraffic congestion
dc.subjectWardrop equilibrium
dc.subjectgeneralized curves
dc.subject.ddc515en
dc.titleWardrop equilibria : rigorous derivation of continuous limits from general networks models
dc.typeDocument de travail / Working paper
dc.description.abstractenThe concept of Wardrop equilibrium plays an important role in congested traffic problems since its introduction in the early 50's. As shown in [2], when we work in two-dimensional cartesian and increasingly dense networks, passing to the limit by Γ-convergence, we obtain continuous minimization problems posed on measures on curves. Here we study the case of general networks in R d which become very dense. We use the notion of generalized curves and extend the results of the cartesian model.
dc.identifier.citationpages43
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphine
dc.subject.ddclabelAnalyseen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.date.updated2017-12-20T15:31:33Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record