The semi-classical limit of large fermionic systems
Fournais, Søren; Lewin, Mathieu; Solovej, Jan Philip (2018), The semi-classical limit of large fermionic systems, Calculus of Variations and Partial Differential Equations, 57, 4, p. n°105. 10.1007/s00526-018-1374-2
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01211494Date
2018Journal name
Calculus of Variations and Partial Differential EquationsVolume
57Number
4Publisher
Springer
Pages
n°105
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study a system of N fermions in the regime where the intensity of the interaction scales as 1/N and with an effective semi-classical parameter ℏ=N−1/d where d is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prove the convergence to the Thomas-Fermi minimizers in the limit N→∞. The limit is expressed using many-particle coherent states and Wigner functions. The method of proof is based on a fermionic de Finetti-Hewitt-Savage theorem in phase space and on a careful analysis of the possible lack of compactness at infinity.Subjects / Keywords
fermions; physique mathématiqueRelated items
Showing items related by title and author.
-
Lewin, Mathieu; Madsen, Peter; Triay, Arnaud (2019) Article accepté pour publication ou publié
-
Fournais, Søren; Madsen, Peter (2020) Article accepté pour publication ou publié
-
Lewin, Mathieu (2018) Article accepté pour publication ou publié
-
Gondran, Alexandre; Gondran, Michel (2011) Communication / Conférence
-
Lampart, Jonas; Lewin, Mathieu (2016) Article accepté pour publication ou publié