• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On the spectral radius of a random matrix: An upper bound without fourth moment

Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil; Tikhomirov, Konstantin (2018), On the spectral radius of a random matrix: An upper bound without fourth moment, Annals of Probability, 46, 4, p. 2268-2286. 10.1214/17-AOP1228

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01346261
Date
2018
Journal name
Annals of Probability
Volume
46
Number
4
Pages
2268-2286
Publication identifier
10.1214/17-AOP1228
Metadata
Show full item record
Author(s)
Bordenave, Charles

Caputo, Pietro

Chafaï, Djalil cc

Tikhomirov, Konstantin
Abstract (EN)
Consider a square matrix with independent and identically distributed entries of zero mean and unit variance. It is well known that if the entries have a finite fourth moment, then, in high dimension, with high probability, the spectral radius is close to the square root of the dimension. We conjecture that this holds true under the sole assumption of zero mean and unit variance, in other words that there are no outliers in the circular law. In this work we establish the conjecture in the case of symmetrically distributed entries with a finite moment of order larger than two. The proof uses the method of moments combined with a novel truncation technique for cycle weights that might be of independent interest.
Subjects / Keywords
Combinatorics; Digraph; Spectral Radius; Random matrix; Heavy Tail

Related items

Showing items related by title and author.

  • Thumbnail
    Convergence of the spectral radius of a random matrix through its characteristic polynomial 
    Bordenave, Charles; Chafaï, Djalil; García-Zelada, David (2021) Article accepté pour publication ou publié
  • Thumbnail
    Spectrum of large random Markov chains: heavy-tailed weights on the oriented complete graph 
    Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil; Piras, Daniele (2017) Article accepté pour publication ou publié
  • Thumbnail
    Spectrum of Markov generators on sparse random graphs 
    Chafaï, Djalil; Caputo, Pietro; Bordenave, Charles (2014) Article accepté pour publication ou publié
  • Thumbnail
    On the convergence of the extremal eigenvalues of empirical covariance matrices with dependence 
    Chafaï, Djalil; Tikhomirov, Konstantin (2018) Article accepté pour publication ou publié
  • Thumbnail
    Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential 
    Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo