dc.contributor.author | Hoffmann, Marc | |
dc.contributor.author | Olivier, Adélaïde | |
dc.contributor.author | Valère Bitseki Penda, Siméon | |
dc.date.accessioned | 2017-11-30T10:12:28Z | |
dc.date.available | 2017-11-30T10:12:28Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1350-7265 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/17112 | |
dc.language.iso | en | en |
dc.subject | Binary trees | |
dc.subject | Bifurcating Markov chains | |
dc.subject | Nonparametric adaptive estimation | |
dc.subject | Bifurcating autoregressive process | |
dc.subject | Growth-fragmentation processes | |
dc.subject | Minimax rates of convergence | |
dc.subject | Deviations inequalities | |
dc.subject.ddc | 519 | en |
dc.title | Adaptive estimation for bifurcating Markov chains | |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In a first part, we prove Bernstein-type deviation inequalities for bifurcating Markov chains (BMC) under a geometric ergodicity assumption, completing former results of Guyon and Bitseki Penda, Djellout and Guillin. These preliminary results are the key ingredient to implement nonparametric wavelet thresholding estimation procedures: in a second part, we construct nonparametric estimators of the transition density of a BMC, of its mean transition density and of the corresponding invariant density, and show smoothness adaptation over various multivariate Besov classes under $L^p$ -loss error, for $1\leq p<\infty$. We prove that our estimators are (nearly) optimal in a minimax sense. As an application, we obtain new results for the estimation of the splitting size-dependent rate of growth-fragmentation models and we extend the statistical study of bifurcating autoregressive processes. | |
dc.relation.isversionofjnlname | Bernoulli | |
dc.relation.isversionofjnlvol | 23 | |
dc.relation.isversionofjnlissue | 4B | |
dc.relation.isversionofjnldate | 2017 | |
dc.relation.isversionofjnlpages | 3598 - 3637 | |
dc.relation.isversionofdoi | 10.3150/16-BEJ859 | |
dc.relation.isversionofjnlpublisher | International Statistical Institute | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2017-12-15T15:05:50Z | |