• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Estimates of First and Second Order Shape Derivatives in Nonsmooth Multidimensional Domains and Applications

Lamboley, Jimmy; Novruzi, Arian; Pierre, Michel (2016), Estimates of First and Second Order Shape Derivatives in Nonsmooth Multidimensional Domains and Applications, Journal of Functional Analysis, 270, 7, p. 2616-2652. 10.1016/j.jfa.2016.02.013

View/Open
LamNovPie_Revis.pdf (440.6Kb)
Type
Article accepté pour publication ou publié
Date
2016
Journal name
Journal of Functional Analysis
Volume
270
Number
7
Publisher
Academic Press
Pages
2616-2652
Publication identifier
10.1016/j.jfa.2016.02.013
Metadata
Show full item record
Author(s)
Lamboley, Jimmy
Novruzi, Arian
Pierre, Michel
Abstract (EN)
In this paper we investigate continuity properties of first and second order shape derivatives of functionals depending on second order elliptic PDE's around nonsmooth domains, essentially either Lipschitz or convex, or satisfying a uniform exterior ball condition. We prove rather sharp continuity results for these shape derivatives with respect to Sobolev norms of the boundary-traces of the displacements. With respect to previous results of this kind, the approach is quite different and is valid in any dimension $N\geq 2$. It is based on sharp regularity results for Poisson-type equations in such nonsmooth domains. We also enlarge the class of functionals and PDEs for which these estimates apply. Applications are given to qualitative properties of shape optimization problems under convexity constraints for the variable domains or their complement.
Subjects / Keywords
shape optimization; optimality conditions; convexity constraint; Shape derivative; Sobolev estimates; regularity; energy functional

Related items

Showing items related by title and author.

  • Thumbnail
    Regularity and singularities of Optimal Convex shapes in the plane 
    Lamboley, Jimmy; Pierre, Michel; Novruzi, Arian (2012) Article accepté pour publication ou publié
  • Thumbnail
    Polygons as optimal shapes with convexity constraint 
    Lamboley, Jimmy; Novruzi, Arian (2009) Article accepté pour publication ou publié
  • Thumbnail
    New examples of extremal domains for the first eigenvalue of the Laplace-Beltrami operator in a Riemannian manifold with boundary 
    Lamboley, Jimmy; Sicbaldi, Pieralberto (2015) Article accepté pour publication ou publié
  • Thumbnail
    Regularity of Minimizers of Shape Optimization Problems involving Perimeter 
    De Philippis, Guido; Lamboley, Jimmy; Pierre, Michel; Velichkov, Bozhidar (2016) Article accepté pour publication ou publié
  • Thumbnail
    Stability in shape optimization with second variation 
    Lamboley, Jimmy; Dambrine, Marc (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo