• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

General limit value in zero-sum stochastic games

Ziliotto, Bruno (2016), General limit value in zero-sum stochastic games, International Journal of Game Theory, 45, 1, p. 353-374. http://dx.doi.org/10.1007/s00182-015-0509-3

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1410.5231v2
Date
2016
Journal name
International Journal of Game Theory
Volume
45
Number
1
Publisher
Springer
Pages
353-374
Publication identifier
http://dx.doi.org/10.1007/s00182-015-0509-3
Metadata
Show full item record
Author(s)
Ziliotto, Bruno
Abstract (EN)
Bewley and Kohlberg (Math Oper Res 1(3):197–208, 1976) and Mertens and Neyman (Int J Game Theory 10(2):53–66, 1981) have respectively proved the existence of the asymptotic value and the uniform value in zero-sum stochastic games with finite state space and finite action sets. In their work, the total payoff in a stochastic game is defined either as a Cesaro mean or an Abel mean of the stage payoffs. The contribution of this paper is twofold: first, it generalizes the result of Bewley and Kohlberg (1976) to a more general class of payoff evaluations, and it proves with an example that this new result is tight. It also investigates the particular case of absorbing games. Second, for the uniform approach of Mertens and Neyman, this paper provides an example of absorbing game to demonstrate that there is no natural way to generalize their result to a wider class of payoff evaluations.
Subjects / Keywords
Stochastic games; Weighted payoffs; Asymptotic value; Shapley operator; Uniform value

Related items

Showing items related by title and author.

  • Thumbnail
    Tauberian theorems for general iterations of operators: Applications to zero-sum stochastic games 
    Ziliotto, Bruno (2018) Article accepté pour publication ou publié
  • Thumbnail
    Constant payoff in zero-sum stochastic games 
    Catoni, Olivier; Oliu-Barton, Miquel; Ziliotto, Bruno (2021) Article accepté pour publication ou publié
  • Thumbnail
    Limit optimal trajectories in zero-sum stochastic games 
    Sorin, Sylvain; Vigeral, Guillaume (2020) Article accepté pour publication ou publié
  • Thumbnail
    Existence of the limit value of two person zero-sum discounted repeated games via comparison theorems 
    Vigeral, Guillaume; Sorin, Sylvain (2013) Article accepté pour publication ou publié
  • Thumbnail
    Generalized iterations of non expansive maps, evolution equations and values of zero-sum stochastic games with varying stage duration 
    Sorin, Sylvain; Vigeral, Guillaume (2015) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo