
Generic perturbations of linear integrable Hamiltonian systems
Bounemoura, Abed (2016), Generic perturbations of linear integrable Hamiltonian systems, Regular and Chaotic Dynamics, 21, 6, p. 665-681. 10.1134/S1560354716060071
View/ Open
Type
Article accepté pour publication ou publiéDate
2016Journal name
Regular and Chaotic DynamicsVolume
21Number
6Publisher
MGU im. M. V. Lomonosova
Pages
665-681
Publication identifier
Metadata
Show full item recordAuthor(s)
Bounemoura, AbedAbstract (EN)
In this paper, we investigate perturbations of linear integrable Hamiltonian systems, with the aim of establishing results in the spirit of the KAM theorem (preservation of invariant tori), the Nekhoroshev theorem (stability of the action variables for a finite but long interval of time) and Arnold diffusion (instability of the action variables). Whether the frequency of the integrable system is resonant or not, it is known that the KAM theorem does not hold true for all perturbations; when the frequency is resonant, it is the Nekhoroshev theorem which does not hold true for all perturbations. Our first result deals with the resonant case: we prove a result of instability for a generic perturbation, which implies that the KAM and the Nekhoroshev theorem do not hold true even for a generic perturbation. The case where the frequency is non-resonant is more subtle. Our second result shows that for a generic perturbation, the KAM theorem holds true. Concerning the Nekhrosohev theorem, it is known that one has stability over an exponentially long interval of time, and that this cannot be improved for all perturbations. Our third result shows that for a generic perturbation, one has stability for a doubly exponentially long interval of time. The only question left unanswered is whether one has instability for a generic perturbation (necessarily after this very long interval of time).Subjects / Keywords
Hamiltonian perturbation theory; KAM theory; Nekhoroshev theory; Arnold diffusionRelated items
Showing items related by title and author.
-
Bounemoura, Abed; Kaloshin, Vadim (2016) Article accepté pour publication ou publié
-
Bounemoura, Abed; Kaloshin, Vadim (2014) Article accepté pour publication ou publié
-
Bounemoura, Abed (2017) Article accepté pour publication ou publié
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2017) Article accepté pour publication ou publié
-
Bounemoura, Abed; Féjoz, Jacques (2021) Ouvrage