Piecewise Geodesics for Vessel Centerline Extraction and Boundary Delineation with Application to Retina Segmentation
Chen, Da; Cohen, Laurent D. (2015), Piecewise Geodesics for Vessel Centerline Extraction and Boundary Delineation with Application to Retina Segmentation, dans Jean-François Aujol, Mila Nikolova, Nicolas Papadakis, Scale Space and Variational Methods in Computer Vision 5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31 - June 4, 2015, Proceedings, Springer : Berlin Heidelberg, p. 270-281. 10.1007/978-3-319-18461-6_22
Type
Communication / ConférenceLien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-01250017Date
2015Titre de l'ouvrage
Scale Space and Variational Methods in Computer Vision 5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31 - June 4, 2015, Proceedings; SSVM'15Auteurs de l’ouvrage
Jean-François Aujol, Mila Nikolova, Nicolas PapadakisÉditeur
Springer
Ville d’édition
Berlin Heidelberg
Isbn
978-3-319-18460-9
Pages
270-281
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
Geodesic methods have been widely applied to image analysis [17]. In this paper, we propose an automatic anisotropic fast marching based geodesic method to extract the centrelines of retinal vessel segments and their boundaries. Our method is related to the geodesic or minimal path technique which is particularly efficient to extract a tubular shape, such as a blood vessel. The proposed method consists of a set of pairs of points. Each pair of points provides the Initial point and Target point for one geodesic. For each pair of Initial point and Target point, we calculate a special Riemannian metric with an additional Radius dimension to constrain the fast marching propagation so that our method can get a nice path without any shortcut. The given pairs of points can be easily obtained from a pre-segmented skeletonized image by any vessel detection filter like Hessian or Oriented Flux method. Experimental results demonstrate that our method can extract vessel segments at a finer scale, with increased accuracy.Mots-clés
Geodesic; Minimal path; Tubular structure extraction; Retinal vessel segmentation; Anisotropic fast marchingPublications associées
Affichage des éléments liés par titre et auteur.
-
Chen, Da; Cohen, Laurent D. (2015) Communication / Conférence
-
Cohen, Laurent D.; Rouchdy, Youssef (2013) Article accepté pour publication ou publié
-
Chen, Da; Cohen, Laurent D.; Mirebeau, Jean-Marie; Tai, Xue-Cheng (2021) Communication / Conférence
-
Liu, Li; Chen, Da; Cohen, Laurent D.; Huazhong, Shu; Pâques, Michel (2019) Communication / Conférence
-
Chen, Da; Cohen, Laurent D. (2018) Communication / Conférence