
Superexponential Stability of Quasi-Periodic Motion in Hamiltonian Systems
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2017), Superexponential Stability of Quasi-Periodic Motion in Hamiltonian Systems, Communications in Mathematical Physics, 350, 1, p. 361–386. 10.1007/s00220-016-2782-9
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2017Nom de la revue
Communications in Mathematical PhysicsVolume
350Numéro
1Éditeur
Springer
Pages
361–386
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
We prove that generically, both in a topological and measure-theoretical sense, an invariant Lagrangian Diophantine torus of a Hamiltonian system is doubly exponentially stable in the sense that nearby solutions remain close to the torus for an interval of time which is doubly exponentially large with respect to the inverse of the distance to the torus. We also prove that for an arbitrary small perturbation of a generic integrable Hamiltonian system, there is a set of almost full positive Lebesgue measure of KAM tori which are doubly exponentially stable. Our results hold true for real-analytic but more generally for Gevrey smooth systems.Mots-clés
Hamiltonian systemsPublications associées
Affichage des éléments liés par titre et auteur.
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2020) Article accepté pour publication ou publié
-
Bounemoura, Abed; Farré, Gerard (2021) Document de travail / Working paper
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2019) Article accepté pour publication ou publié
-
Reducibility of ultra-differentiable quasi-periodic cocycles under an adapted arithmetic condition Bounemoura, Abed; Chavaudret, Claire; Liang, Shuqing (2021) Article accepté pour publication ou publié
-
Bounemoura, Abed (2017) Article accepté pour publication ou publié