Show simple item record

dc.contributor.authorBounemoura, Abed
dc.contributor.authorFayad, Bassam
dc.contributor.authorNiederman, Laurent
dc.date.accessioned2017-12-05T13:05:45Z
dc.date.available2017-12-05T13:05:45Z
dc.date.issued2017
dc.identifier.issn0010-3616
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17172
dc.language.isoenen
dc.subjectHamiltonian systems
dc.subject.ddc515en
dc.titleSuperexponential Stability of Quasi-Periodic Motion in Hamiltonian Systems
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe prove that generically, both in a topological and measure-theoretical sense, an invariant Lagrangian Diophantine torus of a Hamiltonian system is doubly exponentially stable in the sense that nearby solutions remain close to the torus for an interval of time which is doubly exponentially large with respect to the inverse of the distance to the torus. We also prove that for an arbitrary small perturbation of a generic integrable Hamiltonian system, there is a set of almost full positive Lebesgue measure of KAM tori which are doubly exponentially stable. Our results hold true for real-analytic but more generally for Gevrey smooth systems.
dc.relation.isversionofjnlnameCommunications in Mathematical Physics
dc.relation.isversionofjnlvol350
dc.relation.isversionofjnlissue1
dc.relation.isversionofjnldate2017
dc.relation.isversionofjnlpages361–386
dc.relation.isversionofdoi10.1007/s00220-016-2782-9
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2017-12-15T15:29:40Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record