• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A tale of a Principal and many many Agents

Elie, Romuald; Mastrolia, Thibaut; Possamaï, Dylan (2018), A tale of a Principal and many many Agents, Mathematics of Operations Research. 10.1287/moor.2018.0931

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01481390
Date
2018
Journal name
Mathematics of Operations Research
Publisher
INFORMS
Publication identifier
10.1287/moor.2018.0931
Metadata
Show full item record
Author(s)
Elie, Romuald
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mastrolia, Thibaut
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Possamaï, Dylan
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper, we investigate a moral hazard problem in finite time with lump–sum and continuous payments, involving infinitely many Agents with mean field type interactions, hired by one Principal. By reinterpreting the mean-field game faced by each Agent in terms of a mean field forward backward stochastic differential equation (FBSDE for short), we are able to rewrite the Principal's problem as a control problem of McKean–Vlasov SDEs. We review two general approaches to tackle it: the first one introduced recently in [2, 66, 67, 68, 69] using dynamic programming and Hamilton–Jacobi– Bellman (HJB for short) equations, the second based on the stochastic Pontryagin maximum principle, which follows [16]. We solve completely and explicitly the problem in special cases, going beyond the usual linear–quadratic framework. We finally show in our examples that the optimal contract in the N −players' model converges to the mean–field optimal contract when the number of agents goes to +∞, this illustrating in our specific setting the general results of [12].
Subjects / Keywords
Moral hazard; mean field games; McKean–Vlasov SDEs; mean field FBSDEs; infinite dimensional HJB equations

Related items

Showing items related by title and author.

  • Thumbnail
    Contracting theory with competitive interacting Agents 
    Elie, Romuald; Possamaï, Dylan (2016) Document de travail / Working paper
  • Thumbnail
    Density analysis of BSDEs 
    Mastrolia, Thibaut; Possamaï, Dylan; Réveillac, Anthony (2016) Article accepté pour publication ou publié
  • Thumbnail
    On the Malliavin differentiability of BSDEs 
    Mastrolia, Thibaut; Possamaï, Dylan; Réveillac, Anthony (2017) Article accepté pour publication ou publié
  • Thumbnail
    On a class of path-dependent singular stochastic control problems 
    Elie, Romuald; Moreau, Ludovic; Possamaï, Dylan (2018) Article accepté pour publication ou publié
  • Thumbnail
    Moral Hazard under Ambiguity 
    Mastrolia, Thibaut; Possamaï, Dylan (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo