A tale of a Principal and many many Agents
Elie, Romuald; Mastrolia, Thibaut; Possamaï, Dylan (2018), A tale of a Principal and many many Agents, Mathematics of Operations Research. 10.1287/moor.2018.0931
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-01481390Date
2018Nom de la revue
Mathematics of Operations ResearchÉditeur
INFORMS
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Elie, RomualdCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mastrolia, Thibaut
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Possamaï, Dylan
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
In this paper, we investigate a moral hazard problem in finite time with lump–sum and continuous payments, involving infinitely many Agents with mean field type interactions, hired by one Principal. By reinterpreting the mean-field game faced by each Agent in terms of a mean field forward backward stochastic differential equation (FBSDE for short), we are able to rewrite the Principal's problem as a control problem of McKean–Vlasov SDEs. We review two general approaches to tackle it: the first one introduced recently in [2, 66, 67, 68, 69] using dynamic programming and Hamilton–Jacobi– Bellman (HJB for short) equations, the second based on the stochastic Pontryagin maximum principle, which follows [16]. We solve completely and explicitly the problem in special cases, going beyond the usual linear–quadratic framework. We finally show in our examples that the optimal contract in the N −players' model converges to the mean–field optimal contract when the number of agents goes to +∞, this illustrating in our specific setting the general results of [12].Mots-clés
Moral hazard; mean field games; McKean–Vlasov SDEs; mean field FBSDEs; infinite dimensional HJB equationsPublications associées
Affichage des éléments liés par titre et auteur.
-
Elie, Romuald; Possamaï, Dylan (2016) Document de travail / Working paper
-
Mastrolia, Thibaut; Possamaï, Dylan; Réveillac, Anthony (2016) Article accepté pour publication ou publié
-
Mastrolia, Thibaut; Possamaï, Dylan; Réveillac, Anthony (2017) Article accepté pour publication ou publié
-
Elie, Romuald; Moreau, Ludovic; Possamaï, Dylan (2018) Article accepté pour publication ou publié
-
Mastrolia, Thibaut; Possamaï, Dylan (2018) Article accepté pour publication ou publié